Synlett 2024; 35(10): 1149-1152
DOI: 10.1055/a-2236-1122
cluster
Thieme Chemistry Journals Awardees 2023

Rationalizing the Regioselectivity of Azolation of Benzylic C–H Bonds under Photoredox Catalysis

,
César Montiel-Cervantes
,
Miguel Rubio-Muñoz
,
,
We thank the financial support for the project ‘PID2021-126075NB–I00’ financed by the Spanish Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033 FEDER, UE.) I .F.-A thanks the Ministerio de Ciencia e Innovación for the Juan de la Cierva-Incorporation scholarship (IJC2020-045125-I). Nil Sanosa thanks the Universidad de La Rioja for the Becas Santander/Contratos Predoctorales 2023.


Abstract

A density functional theory (DFT) study was performed to evaluate the reaction mechanism of the C–N bond formation under an integrated hydrogen atom transfer/radical-polar crossover photoredox catalytic cycle. The regioselective activation of a model substrate, including three reactive positions (3° benzylic C–H bond, 2° benzylic C–H bond, and primary C–Cl bond) was addressed to distinguish among the radical C–H activation mechanism and the standard SN2 reaction. We demonstrated that activation of tertiary benzylic C–H bond is the most favored and forms exclusively the experimentally observed product. In addition, the whole photoredox catalytic cycle, including the outer-sphere electron-transfer steps, was characterized computationally.

Supporting Information



Publication History

Received: 29 November 2023

Accepted after revision: 28 December 2023

Accepted Manuscript online:
28 December 2023

Article published online:
31 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany