Subscribe to RSS

DOI: 10.1055/a-2238-5394
Aromatic Residue Positioning Influences Helical Peptoid Structure in Aqueous Solution
National Science Foundation (CHE-1904991), Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher-Scholar Award to A.A.F.), Richard Bastiani (undergraduate research award to J.M.J.).

Abstract
Water-soluble peptidomimetics, including peptoids, are promising functional surrogates for biologically relevant, amphiphilic, helical peptides. Twenty amphiphilic peptoid hexamers with predicted helical structures were designed, prepared, and studied using circular dichroism (CD) spectroscopy. The site-specific contributions of aromatic and charged residues to the helical structure of peptoid hexamers in aqueous solution was evaluated, revealing that aromatic residue positioning most significantly impacts structure.
Key words
peptoid - peptidomimetic - helical structures - circular dichroism spectroscopy - solid-phase synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2238-5394.
- Supporting Information
Publication History
Received: 06 October 2023
Accepted after revision: 29 December 2023
Accepted Manuscript online:
04 January 2024
Article published online:
30 January 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Connolly MD, Xuan S, Molchanova N, Zuckermann RN. Methods Enzymol. 2021; 656: 241
- 2 Zuckermann RN, Kerr JM, Kent SB. H, Moos WH. J. Am. Chem. Soc. 1992; 114: 10646
- 3 Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH. Bioorg. Med. Chem. Lett. 1994; 4: 2657
- 4 Astle JM, Udugamasooriya DG, Smallshaw JE, Kodadek T. Int. J. Pept. Res. Ther. 2008; 14: 223
- 5 Schwochert J, Turner R, Thang M, Berkeley RF, Ponkey AR, Rodriguez KM, Leung SS. F, Khunte B, Goetz G, Limberakis C, Kalgutkar AS, Eng H, Shapiro MJ, Mathiowetz AM, Price DA, Liras S, Jacobson MP, Lokey RS. Org. Lett. 2015; 17: 2928
- 6 Armand P, Kirshenbaum K, Falicov A, Dunbrack RL, Dill KA, Zuckermann RN, Cohen FE. Folding Des. 1997; 2: 369
- 7 Wu CW, Kirshenbaum K, Sanborn TJ, Patch JA, Huang K, Dill KA, Zuckermann RN, Barron AE. J. Am. Chem. Soc. 2003; 125: 13525
- 8 Wu CW, Sanborn TJ, Huang K, Zuckermann RN, Barron AE. J. Am. Chem. Soc. 2001; 123: 6778
- 9 Gimenez D, Zhou G, Hurley MF. D, Aguilar JA, Voelz VA, Cobb SL. J. Am. Chem. Soc. 2019; 141: 3430
- 10 Gimenez D, Aguilar JA, Bromley EH. C, Cobb SL. Angew. Chem. Int. Ed. 2018; 57: 10549
- 11 Stringer JR, Crapster JA, Guzei IA, Blackwell HE. J. Am. Chem. Soc. 2011; 133: 15559
- 12 Roy O, Dumonteil G, Faure S, Jouffret L, Kriznik A, Taillefumier C. J. Am. Chem. Soc. 2017; 139: 13533
- 13 Crapster JA, Stringer JR, Guzei IA, Blackwell HE. Pept. Sci. 2011; 96: 604
- 14 D’Amato A, Pierri G, Tedesco C, Della Sala G, Izzo I, Costabile C, De Riccardis F. J. Org. Chem. 2019; 84: 10911
- 15 Gorske BC, Mumford EM, Gerrity CG, Ko I. J. Am. Chem. Soc. 2017; 139: 8070
- 16 Crapster JA, Guzei IA, Blackwell HE. Angew. Chem. Int. Ed. 2013; 52: 5079
- 17 Robertson EJ, Battigelli A, Proulx C, Mannige RV, Haxton TK, Yun L, Whitelam S, Zuckermann RN. Acc. Chem. Res. 2016; 49: 379
- 18 Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 2794
- 19 Nam HY, Choi J, Kumar SD, Nielsen JE, Kyeong M, Wang S, Kang D, Lee Y, Lee J, Yoon M.-H, Hong S, Lund R, Jenssen H, Shin SY, Seo J. ACS Infect. Dis. 2020; 6: 2732
- 20 Bicker KL, Cobb SL. Chem. Commun. 2020; 56: 11158
- 21 Gorske BC, Stringer JR, Bastian BL, Fowler SA, Blackwell HE. J. Am. Chem. Soc. 2009; 131: 16555
- 22 Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R. J. Am. Chem. Soc. 2009; 131: 16798
- 23 Wijaya AW, Nguyen AI, Roe LT, Butterfoss GL, Spencer RK, Li NK, Zuckermann RN. J. Am. Chem. Soc. 2019; 141: 19436
- 24 Rzeigui M, Traikia M, Jouffret L, Kriznik A, Khiari J, Roy O, Taillefumier C. J. Org. Chem. 2020; 85: 2190
- 25 Shin H.-M, Kang C.-M, Yoon M.-H, Seo J. Chem. Commun. 2014; 50: 4465
- 26 Lee B.-C, Chu TK, Dill KA, Zuckermann RN. J. Am. Chem. Soc. 2008; 130: 8847
- 27 Fuller AA, Yurash BA, Schaumann EN, Seidl FJ. Org. Lett. 2013; 15: 5118
- 28 Fuller AA, Jimenez CJ, Martinetto EK, Moreno JL, Calkins AL, Dowell KM, Huber J, McComas KN, Ortega A. Front. Chem. 2020; 8: 260
- 29 Fuller AA, Huber J, Jimenez CJ, Dowell KM, Hough S, Ortega A, McComas KN, Kunkel J, Asuri P. Biopolymers 2019; 110: e23248
- 30 Fuller AA, Tenorio K, Huber J, Hough S, Dowell KM. Supramol. Chem. 2018; 30: 336
- 31 Peptoid synthesis and purification was carried out as described in ref. 28 with modifications for introduction of Ni Pr2ae residues as described in ref. 1; additional details are provided in the Supporting Information. Purified, lyophilized peptoids were dissolved in methanol to prepare 1–2 mM stock. Concentrations were determined by UV absorbance measurements of stock solutions diluted into phosphate-buffered saline (PBS): ε = 3200 M–1 cm–1 for 1–16 at 266 nm; ε = 6359 M–1 cm–1 for 17–20 at 266 nm.
- 32 CD spectra were acquired as described in ref. 28. Additional details are provided in the Supporting Information.
- 33 Mason SF, Seal RH, Roberts DR. Tetrahedron 1974; 30: 1671
- 34 Di Bari L, Pescitelli G, Salvadori P. J. Am. Chem. Soc. 1999; 121: 7998
- 35 Wellhöfer I, Frydenvang K, Kotesova S, Christiansen AM, Laursen JS, Olsen CA. J. Org. Chem. 2019; 84: 3762
- 36 Salvadori P, Piccolo O, Bertucci C, Menicagli R, Lardicci L. J. Am. Chem. Soc. 1980; 102: 6859