Subscribe to RSS
DOI: 10.1055/a-2239-0290
The Impact of Aging on the Function of Retinal Ganglion Cells
Einfluss des Alterns auf die Funktionalität retinaler Ganglienzellen
Abstract
Aging is a major risk factor for retinal neurodegenerative diseases. Aged mammalian retinal ganglion cells (RGCs) lack the ability to regenerate axons after injury. Rodent models suggest that older age increases the vulnerability of RGCs to injury and impairs RGC function as well as their functional recovery. Molecular changes – including decreased circulating levels of brain-derived neurotrophic factor (BDNF) – might contribute to impaired RGC dendritic extension during aging. Moreover, age-related mitochondrial dysfunction plays a major role in aging processes, as it leads to reduced adenosine triphosphate and increased generation of reactive oxygen species. Autophagy activity is necessary for the maintenance of cellular homeostasis and decreases with aging in the central nervous system. During aging, vascular insufficiency may lead to impaired oxygen and nutrient supply to RGCs. Microglial cells undergo morphological changes and functional impairment with aging, which might compromise retinal homeostasis and promote an inflammatory environment. Addressing these age-related changes by means of a low-energy diet, exercise, and neurotrophic factors might prevent age-related functional impairment of RGCs. This review focuses on the current understanding of aging RGCs and key players modulating those underlying mechanisms.
Zusammenfassung
Altern ist ein wichtiger Risikofaktor für neurodegenerative Erkrankungen der Netzhaut. Retinale Ganglienzellen (RGZ) können Axone nach Verletzungen nicht regenerieren. Tiermodelle deuten darauf hin, dass zunehmendes Alter die Vulnerabilität der RGZ erhöht und die Funktion der RGZ sowie ihre funktionelle Erholung beeinträchtigt. Molekulare Veränderungen, bspw. verringerte BDNF-Level (Brain-Derived Neurotrophic Factor), können dazu beitragen, dass die dendritische Ausdehnung der RGZ im Alter beeinträchtigt ist. Auch eine altersbedingte mitochondriale Dysfunktion spielt eine wichtige Rolle bei Alterungsprozessen, da sie zu einer Verringerung an Adenosintriphosphat und einer erhöhten Bildung reaktiver Sauerstoffspezies führt. Die Autophagieaktivität ist für die Aufrechterhaltung der zellulären Homöostase notwendig und nimmt mit zunehmendem Alter im zentralen Nervensystem ab. Während des Alterungsprozesses kann außerdem eine vaskuläre Insuffizienz zu einer beeinträchtigten Sauerstoff- und Nährstoffversorgung der RGZ führen. Mikrogliazellen erfahren mit zunehmendem Alter morphologische Veränderungen und funktionelle Beeinträchtigungen, was die retinale Homöostase beeinträchtigen und ein entzündliches Umfeld fördern könnte. Die Behandlung dieser altersbedingten Veränderungen durch kalorienarme Ernährung, Bewegung und neurotrophe Faktoren könnte altersbedingte funktionale Beeinträchtigungen der RGZ verhindern. Diese Übersichtsarbeit konzentriert sich auf den derzeitigen Kenntnisstand hinsichtlich der Funktion alternder RGZ und die Hauptakteure, die die zugrunde liegenden Mechanismen modulieren.
Publication History
Received: 31 October 2023
Accepted: 19 December 2023
Article published online:
27 February 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lu Y, Brommer B, Tian X. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020; 588: 124-129
- 2 Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 2002; 82: 637-672
- 3 Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7: 278-294
- 4 Zhu JD, Tarachand SP, Abdulwahab Q. et al. Structure, Function, and Molecular Landscapes of the Aging Retina. Annu Rev Vis Sci 2023; 9: 177-199
- 5 Spear PD. Neural bases of visual deficits during aging. Vision Res 1993; 33: 2589-2609
- 6 Chrysostomou V, Trounce IA, Crowston JG. Mechanisms of retinal ganglion cell injury in aging and glaucoma. Ophthalmic Res 2010; 44: 173-178
- 7 Kong YX, van Bergen N, Bui BV. et al. Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury. Neurobiol Aging 2012; 33: 1126.e15-25
- 8 Chrysostomou V, Kezic JM, Trounce IA. et al. Forced exercise protects the aged optic nerve against intraocular pressure injury. Neurobiol Aging 2014; 35: 1722-1725
- 9 Kim US, Mahroo OA, Mollon JD. et al. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12: 661938
- 10 Peichl L. Retinal Ganglion Cells. In: Binder MD, Hirokawa N, Windhorst U, eds. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer; 2009: 3507-3513
- 11 Boia R, Ruzafa N, Aires ID. et al. Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21: 2262
- 12 Watson AB. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J Vis 2014; 14: 15
- 13 Calkins DJ. Age-related changes in the visual pathways: blame it on the axon. Invest Ophthalmol Vis Sci 2013; 54: ORSF37-41
- 14 Perge JA, Niven JE, Mugnaini E. et al. Why do axons differ in caliber?. J Neurosci 2012; 32: 626-638
- 15 Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 2017; 36: 186-192
- 16 Prokosch V, Liu H, Leibinger M. et al. Regeneration des Sehnerven – Wird das einmal Realität?. Ophthalmologie 2022; 119: 919-928
- 17 Samuel MA, Zhang Y, Meister M. et al. Age-related alterations in neurons of the mouse retina. J Neurosci 2011; 31: 16033-16044
- 18 Aggarwal P, Nag TC, Wadhwa S. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 2007; 32: 293-298
- 19 Cepurna WO, Kayton RJ, Johnson EC. et al. Age related optic nerve axonal loss in adult Brown Norway rats. Exp Eye Res 2005; 80: 877-884
- 20 Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging 2018; 61: 146-168
- 21 Esquiva G, Lax P, Pérez-Santonja JJ. et al. Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina. Front Aging Neurosci 2017; 9: 79
- 22 Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci 2006; 7: 30-40
- 23 Li M, He HG, Shi W. et al. Quantification of the human lateral geniculate nucleus in vivo using MR imaging based on morphometry: volume loss with age. AJNR Am J Neuroradiol 2012; 33: 915-921
- 24 Selemon LD, Begovic A. Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007; 151: 1-10
- 25 Croll SD, Ip NY, Lindsay RM. et al. Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res 1998; 812: 200-208
- 26 Gupta V, You Y, Li J. et al. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta 2014; 1842: 1567-1578
- 27 Peinado-Ramon P, Salvador M, Villegas-Perez MP. et al. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996; 37: 489-500
- 28 Gupta VK, You Y, Li JC. et al. Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J Mol Neurosci 2013; 49: 96-104
- 29 Lom B, Cogen J, Sanchez AL. et al. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo . J Neurosci 2002; 22: 7639-7649
- 30 Erickson KI, Prakash RS, Voss MW. et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 2010; 30: 5368-5375
- 31 Kong YX, Van Bergen N, Trounce IA. et al. Increase in mitochondrial DNA mutations impairs retinal function and renders the retina vulnerable to injury. Aging Cell 2011; 10: 572-583
- 32 Robson JG, Maeda H, Saszik SM. et al. In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 2004; 44: 3253-3268
- 33 Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 2004; 555: 153-173
- 34 Moshiri A, Gonzalez E, Tagawa K. et al. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol 2008; 316: 214-227
- 35 Sandalon S, Ofri R. Age-related changes in the pattern electroretinogram of normal and glatiramer acetate-immunized rats. Invest Ophthalmol Vis Sci 2012; 53: 6532-6540
- 36 Liu Q, Ju WK, Crowston JG. et al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 2007; 48: 4580-4589
- 37 Novack RL, Stefånsson E, Hatchell DL. The effect of photocoagulation on the oxygenation and ultrastructure of avascular retina. Exp Eye Res 1990; 50: 289-296
- 38 Lee PY, Zhao D, Wong VHY. et al. The Effect of Aging on Retinal Function and Retinal Ganglion Cell Morphology Following Intraocular Pressure Elevation. Front Aging Neurosci 2022; 14: 859265
- 39 Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004; 23: 53-89
- 40 Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 2014; 20: 353-371
- 41 Jarrett SG, Lin H, Godley BF. et al. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 2008; 27: 596-607
- 42 Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol 2000; 529: 57-68
- 43 Susin SA, Lorenzo HK, Zamzami N. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446
- 44 Kong GY, Van Bergen NJ, Trounce IA. et al. Mitochondrial dysfunction and glaucoma. J Glaucoma 2009; 18: 93-100
- 45 Hall CN, Klein-Flügge MC, Howarth C. et al. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 2012; 32: 8940-8951
- 46 Alexiou A, Nizami B, Khan FI. et al. Mitochondrial Dynamics and Proteins Related to Neurodegenerative Diseases. Curr Protein Pept Sci 2018; 19: 850-857
- 47 Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 2010; 47: 69-84
- 48 Liu H, Mercieca K, Prokosch V. Mitochondrial Markers in Aging and Primary Open-Angle Glaucoma. J Glaucoma 2020; 29: 295-303
- 49 Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78: 547-581
- 50 Cha MY, Kim DK, Mook-Jung I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 2015; 47: e150
- 51 Hebert SL, Lanza IR, Nair KS. Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev 2010; 131: 451-462
- 52 Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 2013; 15: 713-720
- 53 Revuelta M, Matheu A. Autophagy in stem cell aging. Aging Cell 2017; 16: 912-915
- 54 Mehrpour M, Esclatine A, Beau I. et al. Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. Am J Physiol Cell Physiol 2010; 298: C776-C785
- 55 Rodríguez-Muela N, Koga H, García-Ledo L. et al. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 2013; 12: 478-488
- 56 Fimia GM, Stoykova A, Romagnoli A. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 2007; 447: 1121-1125
- 57 Bell K, Rosignol I, Sierra-Filardi E. et al. Age related retinal Ganglion cell susceptibility in context of autophagy deficiency. Cell Death Discov 2020; 6: 21
- 58 Hughes S, Gardiner T, Hu P. et al. Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability. Neurobiol Aging 2006; 27: 1838-1847
- 59 Leung H, Wang JJ, Rochtchina E. et al. Relationships between age, blood pressure, and retinal vessel diameters in an older population. Invest Ophthalmol Vis Sci 2003; 44: 2900-2904
- 60 Ravalico G, Toffoli G, Pastori G. et al. Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci 1996; 37: 2645-2650
- 61 Groh MJ, Michelson G, Langhans MJ. et al. Influence of age on retinal and optic nerve head blood circulation. Ophthalmology 1996; 103: 529-534
- 62 Rizzo J, Feke G, Goger D. et al. Optic nerve head blood speed as a function of age in normal human subjects. Invest Ophthalmol Vis Sci 1991; 32: 3263-3272
- 63 Wang X, Wang M, Liu H. et al. The Association between Vascular Abnormalities and Glaucoma-What Comes First?. Int J Mol Sci 2023; 24: 13211
- 64 Veronica G, Esther RR. Aging, metabolic syndrome and the heart. Aging Dis 2012; 3: 269-279
- 65 Garhöfer G, Chua J, Tan B. et al. Retinal Neurovascular Coupling in Diabetes. J Clin Med 2020; 9: 2829
- 66 Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45: 10-32
- 67 Herrera MD, Mingorance C, Rodríguez-Rodríguez R. et al. Endothelial dysfunction and aging: an update. Ageing Res Rev 2010; 9: 142-152
- 68 Nortley R, Korte N, Izquierdo P. et al. Amyloid β oligomers constrict human capillaries in Alzheimerʼs disease via signaling to pericytes. Science 2019; 365: eaav9518
- 69 Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res 2009; 28: 348-368
- 70 Karlstetter M, Langmann T. Microglia in the aging retina. Adv Exp Med Biol 2014; 801: 207-212
- 71 Wang X, Zhao L, Zhang J. et al. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. J Neurosci 2016; 36: 2827-2842
- 72 Schafer DP, Lehrman EK, Kautzman AG. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691-705
- 73 Glenn JV, Stitt AW. The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta 2009; 1790: 1109-1116
- 74 Fang F, Lue LF, Yan S. et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimerʼs disease. FASEB J 2010; 24: 1043-1055
- 75 Davies DS, Ma J, Jegathees T. et al. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimerʼs disease. Brain Pathol 2017; 27: 795-808
- 76 Streit WJ. Microglial senescence: does the brainʼs immune system have an expiration date?. Trends Neurosci 2006; 29: 506-510
- 77 Hickman SE, Kingery ND, Ohsumi TK. et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013; 16: 1896-1905
- 78 Antignano I, Liu Y, Offermann N. et al. Aging microglia. Cell Mol Life Sci 2023; 80: 126
- 79 Minhas PS, Latif-Hernandez A, McReynolds MR. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 2021; 590: 122-128
- 80 Keane L, Antignano I, Riechers SP. et al. mTOR-dependent translation amplifies microglia priming in aging mice. J Clin Invest 2021; 131: e132727
- 81 Damani MR, Zhao L, Fontainhas AM. et al. Age‐related alterations in the dynamic behavior of microglia. Aging Cell 2011; 10: 263-276
- 82 Streit WJ, Xue QS. Life and death of microglia. J Neuroimmune Pharmacol 2009; 4: 371-379
- 83 Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2021; 15: 815923
- 84 Seki M, Tanaka T, Sakai Y. et al. Müller Cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat Müller cells. Neurochem Res 2005; 30: 1163-1170
- 85 Unterlauft JD, Claudepierre T, Schmidt M. et al. Enhanced survival of retinal ganglion cells is mediated by Müller glial cell-derived PEDF. Exp Eye Res 2014; 127: 206-214
- 86 Saint-Geniez M, Maharaj AS, Walshe TE. et al. Endogenous VEGF is required for visual function: evidence for a survival role on Müller cells and photoreceptors. PLoS One 2008; 3: e3554
- 87 Taguchi M, Shinozaki Y, Kashiwagi K. et al. Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y(6) receptor signals. J Neurochem 2016; 136: 741-751
- 88 Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235: 109645
- 89 Nag TC, Wadhwa S, Alladi PA. et al. Localization of 4-hydroxy 2-nonenal immunoreactivity in aging human retinal Müller cells. Ann Anat 2011; 193: 205-210
- 90 Chen Y, Zhang T, Zeng S. et al. Transketolase in human Müller cells is critical to resist light stress through the pentose phosphate and NRF2 pathways. Redox Biol 2022; 54: 102379
- 91 Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 1997; 337: 986-994
- 92 Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 2003; 78: 361-369
- 93 Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004; 27: 589-594
- 94 Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 2008; 9: 58-65