Subscribe to RSS
DOI: 10.1055/a-2239-0290
The Impact of Aging on the Function of Retinal Ganglion Cells
Einfluss des Alterns auf die Funktionalität retinaler GanglienzellenAbstract
Aging is a major risk factor for retinal neurodegenerative diseases. Aged mammalian retinal ganglion cells (RGCs) lack the ability to regenerate axons after injury. Rodent models suggest that older age increases the vulnerability of RGCs to injury and impairs RGC function as well as their functional recovery. Molecular changes – including decreased circulating levels of brain-derived neurotrophic factor (BDNF) – might contribute to impaired RGC dendritic extension during aging. Moreover, age-related mitochondrial dysfunction plays a major role in aging processes, as it leads to reduced adenosine triphosphate and increased generation of reactive oxygen species. Autophagy activity is necessary for the maintenance of cellular homeostasis and decreases with aging in the central nervous system. During aging, vascular insufficiency may lead to impaired oxygen and nutrient supply to RGCs. Microglial cells undergo morphological changes and functional impairment with aging, which might compromise retinal homeostasis and promote an inflammatory environment. Addressing these age-related changes by means of a low-energy diet, exercise, and neurotrophic factors might prevent age-related functional impairment of RGCs. This review focuses on the current understanding of aging RGCs and key players modulating those underlying mechanisms.
Zusammenfassung
Altern ist ein wichtiger Risikofaktor für neurodegenerative Erkrankungen der Netzhaut. Retinale Ganglienzellen (RGZ) können Axone nach Verletzungen nicht regenerieren. Tiermodelle deuten darauf hin, dass zunehmendes Alter die Vulnerabilität der RGZ erhöht und die Funktion der RGZ sowie ihre funktionelle Erholung beeinträchtigt. Molekulare Veränderungen, bspw. verringerte BDNF-Level (Brain-Derived Neurotrophic Factor), können dazu beitragen, dass die dendritische Ausdehnung der RGZ im Alter beeinträchtigt ist. Auch eine altersbedingte mitochondriale Dysfunktion spielt eine wichtige Rolle bei Alterungsprozessen, da sie zu einer Verringerung an Adenosintriphosphat und einer erhöhten Bildung reaktiver Sauerstoffspezies führt. Die Autophagieaktivität ist für die Aufrechterhaltung der zellulären Homöostase notwendig und nimmt mit zunehmendem Alter im zentralen Nervensystem ab. Während des Alterungsprozesses kann außerdem eine vaskuläre Insuffizienz zu einer beeinträchtigten Sauerstoff- und Nährstoffversorgung der RGZ führen. Mikrogliazellen erfahren mit zunehmendem Alter morphologische Veränderungen und funktionelle Beeinträchtigungen, was die retinale Homöostase beeinträchtigen und ein entzündliches Umfeld fördern könnte. Die Behandlung dieser altersbedingten Veränderungen durch kalorienarme Ernährung, Bewegung und neurotrophe Faktoren könnte altersbedingte funktionale Beeinträchtigungen der RGZ verhindern. Diese Übersichtsarbeit konzentriert sich auf den derzeitigen Kenntnisstand hinsichtlich der Funktion alternder RGZ und die Hauptakteure, die die zugrunde liegenden Mechanismen modulieren.
Publication History
Received: 31 October 2023
Accepted: 19 December 2023
Article published online:
27 February 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lu Y, Brommer B, Tian X. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020; 588: 124-129 DOI: 10.1038/s41586-020-2975-4.
- 2 Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 2002; 82: 637-672 DOI: 10.1152/physrev.00004.2002.
- 3 Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7: 278-294 DOI: 10.1038/nrn1886.
- 4 Zhu JD, Tarachand SP, Abdulwahab Q. et al. Structure, Function, and Molecular Landscapes of the Aging Retina. Annu Rev Vis Sci 2023; 9: 177-199 DOI: 10.1146/annurev-vision-112122-020950.
- 5 Spear PD. Neural bases of visual deficits during aging. Vision Res 1993; 33: 2589-2609 DOI: 10.1016/0042-6989(93)90218-l.
- 6 Chrysostomou V, Trounce IA, Crowston JG. Mechanisms of retinal ganglion cell injury in aging and glaucoma. Ophthalmic Res 2010; 44: 173-178 DOI: 10.1159/000316478.
- 7 Kong YX, van Bergen N, Bui BV. et al. Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury. Neurobiol Aging 2012; 33: 1126.e15-25 DOI: 10.1016/j.neurobiolaging.2011.11.026.
- 8 Chrysostomou V, Kezic JM, Trounce IA. et al. Forced exercise protects the aged optic nerve against intraocular pressure injury. Neurobiol Aging 2014; 35: 1722-1725 DOI: 10.1016/j.neurobiolaging.2014.01.019.
- 9 Kim US, Mahroo OA, Mollon JD. et al. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12: 661938 DOI: 10.3389/fneur.2021.661938.
- 10 Peichl L. Retinal Ganglion Cells. In: Binder MD, Hirokawa N, Windhorst U, eds. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer; 2009: 3507-3513
- 11 Boia R, Ruzafa N, Aires ID. et al. Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21: 2262 DOI: 10.3390/ijms21072262.
- 12 Watson AB. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J Vis 2014; 14: 15 DOI: 10.1167/14.7.15.
- 13 Calkins DJ. Age-related changes in the visual pathways: blame it on the axon. Invest Ophthalmol Vis Sci 2013; 54: ORSF37-41 DOI: 10.1167/iovs.13-12784.
- 14 Perge JA, Niven JE, Mugnaini E. et al. Why do axons differ in caliber?. J Neurosci 2012; 32: 626-638 DOI: 10.1523/jneurosci.4254-11.2012.
- 15 Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 2017; 36: 186-192
- 16 Prokosch V, Liu H, Leibinger M. et al. Regeneration des Sehnerven – Wird das einmal Realität?. Ophthalmologie 2022; 119: 919-928
- 17 Samuel MA, Zhang Y, Meister M. et al. Age-related alterations in neurons of the mouse retina. J Neurosci 2011; 31: 16033-16044 DOI: 10.1523/jneurosci.3580-11.2011.
- 18 Aggarwal P, Nag TC, Wadhwa S. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 2007; 32: 293-298 DOI: 10.1007/s12038-007-0029-9.
- 19 Cepurna WO, Kayton RJ, Johnson EC. et al. Age related optic nerve axonal loss in adult Brown Norway rats. Exp Eye Res 2005; 80: 877-884 DOI: 10.1016/j.exer.2004.12.021.
- 20 Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging 2018; 61: 146-168 DOI: 10.1016/j.neurobiolaging.2017.09.021.
- 21 Esquiva G, Lax P, Pérez-Santonja JJ. et al. Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina. Front Aging Neurosci 2017; 9: 79 DOI: 10.3389/fnagi.2017.00079.
- 22 Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci 2006; 7: 30-40 DOI: 10.1038/nrn1809.
- 23 Li M, He HG, Shi W. et al. Quantification of the human lateral geniculate nucleus in vivo using MR imaging based on morphometry: volume loss with age. AJNR Am J Neuroradiol 2012; 33: 915-921
- 24 Selemon LD, Begovic A. Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007; 151: 1-10
- 25 Croll SD, Ip NY, Lindsay RM. et al. Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res 1998; 812: 200-208 DOI: 10.1016/s0006-8993(98)00993-7.
- 26 Gupta V, You Y, Li J. et al. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta 2014; 1842: 1567-1578 DOI: 10.1016/j.bbadis.2014.05.026.
- 27 Peinado-Ramon P, Salvador M, Villegas-Perez MP. et al. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996; 37: 489-500
- 28 Gupta VK, You Y, Li JC. et al. Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J Mol Neurosci 2013; 49: 96-104 DOI: 10.1007/s12031-012-9899-x.
- 29 Lom B, Cogen J, Sanchez AL. et al. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo . J Neurosci 2002; 22: 7639-7649 DOI: 10.1523/jneurosci.22-17-07639.2002.
- 30 Erickson KI, Prakash RS, Voss MW. et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 2010; 30: 5368-5375 DOI: 10.1523/jneurosci.6251-09.2010.
- 31 Kong YX, Van Bergen N, Trounce IA. et al. Increase in mitochondrial DNA mutations impairs retinal function and renders the retina vulnerable to injury. Aging Cell 2011; 10: 572-583 DOI: 10.1111/j.1474-9726.2011.00690.x.
- 32 Robson JG, Maeda H, Saszik SM. et al. In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 2004; 44: 3253-3268 DOI: 10.1016/j.visres.2004.09.002.
- 33 Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 2004; 555: 153-173 DOI: 10.1113/jphysiol.2003.052738.
- 34 Moshiri A, Gonzalez E, Tagawa K. et al. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol 2008; 316: 214-227 DOI: 10.1016/j.ydbio.2008.01.015.
- 35 Sandalon S, Ofri R. Age-related changes in the pattern electroretinogram of normal and glatiramer acetate-immunized rats. Invest Ophthalmol Vis Sci 2012; 53: 6532-6540 DOI: 10.1167/iovs.12-10103.
- 36 Liu Q, Ju WK, Crowston JG. et al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 2007; 48: 4580-4589 DOI: 10.1167/iovs.07-0170.
- 37 Novack RL, Stefånsson E, Hatchell DL. The effect of photocoagulation on the oxygenation and ultrastructure of avascular retina. Exp Eye Res 1990; 50: 289-296 DOI: 10.1016/0014-4835(90)90213-e.
- 38 Lee PY, Zhao D, Wong VHY. et al. The Effect of Aging on Retinal Function and Retinal Ganglion Cell Morphology Following Intraocular Pressure Elevation. Front Aging Neurosci 2022; 14: 859265 DOI: 10.3389/fnagi.2022.859265.
- 39 Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004; 23: 53-89 DOI: 10.1016/j.preteyeres.2003.10.003.
- 40 Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 2014; 20: 353-371 DOI: 10.1089/ars.2012.4774.
- 41 Jarrett SG, Lin H, Godley BF. et al. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 2008; 27: 596-607 DOI: 10.1016/j.preteyeres.2008.09.001.
- 42 Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol 2000; 529: 57-68 DOI: 10.1111/j.1469-7793.2000.00057.x.
- 43 Susin SA, Lorenzo HK, Zamzami N. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446 DOI: 10.1038/17135.
- 44 Kong GY, Van Bergen NJ, Trounce IA. et al. Mitochondrial dysfunction and glaucoma. J Glaucoma 2009; 18: 93-100 DOI: 10.1097/IJG.0b013e318181284f.
- 45 Hall CN, Klein-Flügge MC, Howarth C. et al. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 2012; 32: 8940-8951 DOI: 10.1523/jneurosci.0026-12.2012.
- 46 Alexiou A, Nizami B, Khan FI. et al. Mitochondrial Dynamics and Proteins Related to Neurodegenerative Diseases. Curr Protein Pept Sci 2018; 19: 850-857 DOI: 10.2174/1389203718666170810150151.
- 47 Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 2010; 47: 69-84 DOI: 10.1042/bse0470069.
- 48 Liu H, Mercieca K, Prokosch V. Mitochondrial Markers in Aging and Primary Open-Angle Glaucoma. J Glaucoma 2020; 29: 295-303 DOI: 10.1097/ijg.0000000000001448.
- 49 Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78: 547-581 DOI: 10.1152/physrev.1998.78.2.547.
- 50 Cha MY, Kim DK, Mook-Jung I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 2015; 47: e150 DOI: 10.1038/emm.2014.122.
- 51 Hebert SL, Lanza IR, Nair KS. Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev 2010; 131: 451-462
- 52 Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 2013; 15: 713-720 DOI: 10.1038/ncb2788.
- 53 Revuelta M, Matheu A. Autophagy in stem cell aging. Aging Cell 2017; 16: 912-915 DOI: 10.1111/acel.12655.
- 54 Mehrpour M, Esclatine A, Beau I. et al. Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview. Am J Physiol Cell Physiol 2010; 298: C776-C785 DOI: 10.1152/ajpcell.00507.2009.
- 55 Rodríguez-Muela N, Koga H, García-Ledo L. et al. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 2013; 12: 478-488 DOI: 10.1111/acel.12072.
- 56 Fimia GM, Stoykova A, Romagnoli A. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 2007; 447: 1121-1125 DOI: 10.1038/nature05925.
- 57 Bell K, Rosignol I, Sierra-Filardi E. et al. Age related retinal Ganglion cell susceptibility in context of autophagy deficiency. Cell Death Discov 2020; 6: 21 DOI: 10.1038/s41420-020-0257-4.
- 58 Hughes S, Gardiner T, Hu P. et al. Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability. Neurobiol Aging 2006; 27: 1838-1847 DOI: 10.1016/j.neurobiolaging.2005.10.021.
- 59 Leung H, Wang JJ, Rochtchina E. et al. Relationships between age, blood pressure, and retinal vessel diameters in an older population. Invest Ophthalmol Vis Sci 2003; 44: 2900-2904 DOI: 10.1167/iovs.02-1114.
- 60 Ravalico G, Toffoli G, Pastori G. et al. Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci 1996; 37: 2645-2650
- 61 Groh MJ, Michelson G, Langhans MJ. et al. Influence of age on retinal and optic nerve head blood circulation. Ophthalmology 1996; 103: 529-534 DOI: 10.1016/s0161-6420(96)30662-3.
- 62 Rizzo J, Feke G, Goger D. et al. Optic nerve head blood speed as a function of age in normal human subjects. Invest Ophthalmol Vis Sci 1991; 32: 3263-3272
- 63 Wang X, Wang M, Liu H. et al. The Association between Vascular Abnormalities and Glaucoma-What Comes First?. Int J Mol Sci 2023; 24: 13211 DOI: 10.3390/ijms241713211.
- 64 Veronica G, Esther RR. Aging, metabolic syndrome and the heart. Aging Dis 2012; 3: 269-279
- 65 Garhöfer G, Chua J, Tan B. et al. Retinal Neurovascular Coupling in Diabetes. J Clin Med 2020; 9: 2829 DOI: 10.3390/jcm9092829.
- 66 Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45: 10-32 DOI: 10.1016/j.devcel.2018.01.023.
- 67 Herrera MD, Mingorance C, Rodríguez-Rodríguez R. et al. Endothelial dysfunction and aging: an update. Ageing Res Rev 2010; 9: 142-152 DOI: 10.1016/j.arr.2009.07.002.
- 68 Nortley R, Korte N, Izquierdo P. et al. Amyloid β oligomers constrict human capillaries in Alzheimerʼs disease via signaling to pericytes. Science 2019; 365: eaav9518 DOI: 10.1126/science.aav9518.
- 69 Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res 2009; 28: 348-368 DOI: 10.1016/j.preteyeres.2009.06.001.
- 70 Karlstetter M, Langmann T. Microglia in the aging retina. Adv Exp Med Biol 2014; 801: 207-212 DOI: 10.1007/978-1-4614-3209-8_27.
- 71 Wang X, Zhao L, Zhang J. et al. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. J Neurosci 2016; 36: 2827-2842 DOI: 10.1523/jneurosci.3575-15.2016.
- 72 Schafer DP, Lehrman EK, Kautzman AG. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691-705 DOI: 10.1016/j.neuron.2012.03.026.
- 73 Glenn JV, Stitt AW. The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta 2009; 1790: 1109-1116 DOI: 10.1016/j.bbagen.2009.04.016.
- 74 Fang F, Lue LF, Yan S. et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimerʼs disease. FASEB J 2010; 24: 1043-1055 DOI: 10.1096/fj.09-139634.
- 75 Davies DS, Ma J, Jegathees T. et al. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimerʼs disease. Brain Pathol 2017; 27: 795-808 DOI: 10.1111/bpa.12456.
- 76 Streit WJ. Microglial senescence: does the brainʼs immune system have an expiration date?. Trends Neurosci 2006; 29: 506-510 DOI: 10.1016/j.tins.2006.07.001.
- 77 Hickman SE, Kingery ND, Ohsumi TK. et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013; 16: 1896-1905 DOI: 10.1038/nn.3554.
- 78 Antignano I, Liu Y, Offermann N. et al. Aging microglia. Cell Mol Life Sci 2023; 80: 126 DOI: 10.1007/s00018-023-04775-y.
- 79 Minhas PS, Latif-Hernandez A, McReynolds MR. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 2021; 590: 122-128 DOI: 10.1038/s41586-020-03160-0.
- 80 Keane L, Antignano I, Riechers SP. et al. mTOR-dependent translation amplifies microglia priming in aging mice. J Clin Invest 2021; 131: e132727 DOI: 10.1172/jci132727.
- 81 Damani MR, Zhao L, Fontainhas AM. et al. Age‐related alterations in the dynamic behavior of microglia. Aging Cell 2011; 10: 263-276
- 82 Streit WJ, Xue QS. Life and death of microglia. J Neuroimmune Pharmacol 2009; 4: 371-379
- 83 Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2021; 15: 815923 DOI: 10.3389/fncir.2021.815923.
- 84 Seki M, Tanaka T, Sakai Y. et al. Müller Cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat Müller cells. Neurochem Res 2005; 30: 1163-1170 DOI: 10.1007/s11064-005-7936-7.
- 85 Unterlauft JD, Claudepierre T, Schmidt M. et al. Enhanced survival of retinal ganglion cells is mediated by Müller glial cell-derived PEDF. Exp Eye Res 2014; 127: 206-214 DOI: 10.1016/j.exer.2014.08.004.
- 86 Saint-Geniez M, Maharaj AS, Walshe TE. et al. Endogenous VEGF is required for visual function: evidence for a survival role on Müller cells and photoreceptors. PLoS One 2008; 3: e3554 DOI: 10.1371/journal.pone.0003554.
- 87 Taguchi M, Shinozaki Y, Kashiwagi K. et al. Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y(6) receptor signals. J Neurochem 2016; 136: 741-751 DOI: 10.1111/jnc.13427.
- 88 Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235: 109645
- 89 Nag TC, Wadhwa S, Alladi PA. et al. Localization of 4-hydroxy 2-nonenal immunoreactivity in aging human retinal Müller cells. Ann Anat 2011; 193: 205-210
- 90 Chen Y, Zhang T, Zeng S. et al. Transketolase in human Müller cells is critical to resist light stress through the pentose phosphate and NRF2 pathways. Redox Biol 2022; 54: 102379
- 91 Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 1997; 337: 986-994 DOI: 10.1056/nejm199710023371407.
- 92 Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 2003; 78: 361-369 DOI: 10.1093/ajcn/78.3.361.
- 93 Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004; 27: 589-594 DOI: 10.1016/j.tins.2004.08.001.
- 94 Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 2008; 9: 58-65