Synlett 2024; 35(16): 1877-1882 DOI: 10.1055/a-2251-1849
An Efficient Access to Heteroaryl/Aryl-Annulated Pyridine Derivatives and a Study of Their Mosquito Larvicidal Activity Against Dengue Vector
Pamela Pal‡
a
Department of Chemistry, Diamond Harbour Women’s University, Sarisha-743368, West Bengal, India
,
Sayanti Show‡
a
Department of Chemistry, Diamond Harbour Women’s University, Sarisha-743368, West Bengal, India
,
Sukanya Das
b
Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
,
Sayantika Bhakta
c
Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
,
Swarupa Mondal
d
Department of Zoology, Diamond Harbour Women’s University, Sarisha-743368, West Bengal, India
,
Priya Roy∗
d
Department of Zoology, Diamond Harbour Women’s University, Sarisha-743368, West Bengal, India
,
Tapas Ghosh∗
b
Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
c
Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
,
a
Department of Chemistry, Diamond Harbour Women’s University, Sarisha-743368, West Bengal, India
b
Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
› Author Affiliations This work is supported by UGC through a startup grant (No. F.30-567/2021-BSR). S.D. thanks DST INSPIRE for her Ph.D. fellowship (IF 190973).
Dedicated to Professor K. C. Majumdar on his 78th birthday
Abstract
We report a convergent synthesis of heteroaryl/aryl-annulated pyridine and quinoline derivatives by a metal-free Povarov reaction. para -Toluene sulfonic acid was used as the catalyst in this reaction, which produced the products in good yields from the corresponding aromatic amines and ethyl vinyl ether. A pyridocoumarin and a pyridopyrimidine product were evaluated for their mosquito larvicidal activity against the third instar larvae of the dengue vector mosquito Aedes aegypti . Examination of morphological changes in the larvae showed damage to the target body part after treatment with both the pyridocoumarin and pyridopyrimidine products at the LC50 concentrations.
Key words
pyridocoumarins -
pyridopyrimidines -
Povarov reaction -
metal-free synthesis -
insecticides
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2251-1849.
Supporting Information
Publication History
Received: 22 January 2024
Accepted: 22 January 2024
Accepted Manuscript online: 22 January 2024
Article published online: 22 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
2a
Wang Y,
Dong X,
Larock RC.
J. Org. Chem. 2003; 68: 3090
2b
Moody CJ,
Hughes RA,
Thompson SP,
Alcaraz L.
Chem. Commun. 2002; 1760
2c
Bach T,
Heuser S.
Synlett 2002; 2089
3a
Michael JP.
Nat. Prod. Rep. 2005; 22: 627
3b
Michael JP.
Nat. Prod. Rep. 2003; 20: 476
3c
Michael JP.
Nat. Prod. Rep. 2002; 19: 742
3d
Michael JP.
Nat. Prod. Rep. 2004; 21: 650
3e
Maguire MP,
Sheets KR,
McVety K,
Spada AP,
Zilberstein A.
J. Med. Chem. 1994; 37: 2129
3f
Kalluraya B,
Sreenivasa S.
Farmaco 1998; 53: 399
3g
Dubé D,
Blouin M,
Brideau C,
Chan C.-C,
Desmarais S,
Ethier D,
Falgueyret J.-P,
Friesen RW,
Girard M,
Girard Y,
Guay J,
Riendeau D,
Tagari P,
Young RN.
Bioorg. Med. Chem. Lett. 1998; 8: 1255
4a
Aggarwal AK,
Jenekhe SA.
Macromolecules 1991; 24: 6806
4b
Zhang X,
Shetty AS,
Jenekhe SA.
Macromolecules 1999; 32: 7422
4c
Jenekhe SA,
Lu L,
Alam MM.
Macromolecules 2001; 34: 7315
5a
Dawane BS,
Konda SG,
Bodade RG,
Bhosale RB.
J. Heterocycl. Chem. 2010; 47: 237
5b
Groundwater PW,
Munawar MA.
Adv. Heterocycl. Chem. 1997; 70: 89
5c
Michael JP.
Nat. Prod. Rep. 2000; 17: 603
6a
Marco JL,
Carreiras MC.
Mini-Rev. Med. Chem. 2003; 6: 518
6b
Puricelli L,
Innocenti G,
Delle Monache G,
Caniato R,
Filippini R,
Cappelletti EM.
Nat. Prod. Lett. 2002; 16: 95
6c
Corral RA,
Orazi OO.
Tetrahedron Lett. 1967; 583
6d
Sekar M,
Prasad RK. J.
J. Nat. Prod. 1998; 61: 294
6e
Brahic C,
Darro F,
Belloir M,
Bastide J,
Kiss R,
Delfourne E.
Bioorg. Med. Chem. 2002; 10: 2845
7a
Hurlbert BS,
Valenti BF.
J. Med. Chem. 1968; 11: 708
7b
Althius TH,
Moore PF,
Hess HJ.
J. Med. Chem. 1979; 22: 44
7c
Althius TH,
Kasin SB,
Czuba LJ,
Moore PF,
Hess HJ.
J. Med. Chem. 1980; 23: 262
7d
Cowart M,
Lee C.-H,
Gfesser GA,
Bayburt EK,
Bhagwat SS,
Stewart AO,
Yu H,
Kohlhaas KL,
McGaraughty S,
Wismer CT,
Mikusa J,
Zhu C,
Alexander KM,
Jarvis MF,
Kowaluk EA.
Bioorg. Med. Chem. Lett. 2001; 11: 83
7e
Rosowsky A,
Chen H.
J. Org. Chem. 2001; 66: 7522
8a
De Clercq E,
Bernaerts R.
J. Biol. Chem. 1987; 262: 14905
8b
Brown JD.
In
Comprehensive Heterocyclic Chemistry , Vol. 3, Chap. 2.13.
Katritzky AR,
Rees CW.
Pergamon; Oxford: 1984: 57
8c
Lunt E.
In
Comprehensive Organic Chemistry , Vol. 4.
Barton D,
Ollis WD.
Pergamon; Oxford: 1974
9a
Schmidt G,
Stoltefuss J,
Lögers M,
Brandes A,
Schmeck C,
Bremm K.-D,
Bischoff H,
Schmidt D.
WO 9914215, 1999
9b
Smith HW.
EP 0161867, 1985
10
El-Dean AM. K,
Abd-Ella AA,
Hassanien R,
El-Sayed ME. A,
Abdel-Raheem SA. A.
ACS Omega 2019; 4: 8406 ; and reference therein
11 World Health Organization; Dengue and Severe Dengue ; WHO: Geneva, 2024 (accessed Feb 6, 2024); https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
12a
Tiemann F,
Oppermann J.
Ber. Dtsch. Chem. Ges. 1880; 13: 2056
12b
Doebner O,
von Miller W.
Ber. Dtsch. Chem. Ges. 1881; 14: 2812
12c
Combes A.
Bull. Soc. Chim. Fr. 1883; 49: 89
12d
Ciamician GL,
Dennstedt M.
Ber. Dtsch. Chem. Ges. 1881; 14: 1153
13a
Majumdar KC,
Debnath P,
Chottopadhyay SK.
Synth. Commun. 2008; 38: 1768
13b
Baker SR,
Cases M,
Keenan M,
Lewis RA,
Tan P.
Tetrahedron Lett. 2003; 44: 2995
13c
Navarro-Vázquez A,
García A,
Domínguez D.
J. Org. Chem. 2002; 67: 3213
13d
Yue D,
Della Cá N,
Larock RC.
J. Org. Chem. 2006; 71: 3381
13e
Yue D,
Della CN,
Larock RC.
Org. Lett. 2004; 6: 1581
13f
Zhang X,
Campo MA,
Yao T,
Larock RC.
Org. Lett. 2005; 7: 763
13g
Fei N,
Hou Q,
Wang S,
Wang H,
Yao Z.-J.
Org. Biomol. Chem. 2010; 8: 4096
13h
Majumdar KC,
Chattopadhyay B,
Taher A.
Synthesis 2007; 3647
13i
Majumdar KC,
Chattopadhyay B,
Pal AK.
Lett. Org. Chem. 2008; 5: 276
13j
Kawahara N,
Nakajima T,
Itoh T,
Ogura H.
Chem. Pharm. Bull. 1985; 33: 4740
13k
Zhang X,
Yao T,
Campo MA,
Larock RC.
Tetrahedron 2010; 66: 1177
13l
Xiao F,
Chen Y,
Liu Y,
Wang J.
Tetrahedron 2008; 64: 2755
14a
Sridharan V,
Avendaño C,
Menéndez JC.
Synthesis 2008; 1039
14b
Zhou Z,
Xu F,
Han X,
Zhou J,
Shen Q.
Eur. J. Org. Chem. 2007; 5265
14c
Colby DA,
Bergman RG,
Ellman JA.
J. Am. Chem. Soc. 2006; 128: 5604
14d
Kamble VT,
Ekhe VR,
Joshi NS,
Biradar AV.
Synlett 2007; 1379
14e
Semwal A,
Nayak S.
Synth. Commun. 2006; 36: 227
14f
Da Silva-Filho LC,
Lacerda VJr,
Constantino MG,
da Silva GV. J.
Synthesis 2008; 2527
14g
Stevenson PJ,
Graham I.
ARKIVOC 2003; (vii): 139
15a
Povarov LS,
Mikhailov BM.
Izv. Akad. Nauk SSSR, Ser. Khim 1963; 953
15b
Povarov LS,
Grigos VI,
Mikhailov BM.
Izv. Akad. Nauk SSSR, Ser. Khim. 1963; 2039
15c
Porai-Koshits BA,
Efros LS,
Vertkina VN,
Lutsenko VV.
Zh. Obshch. Khim. 1954; 24: 895
15d
Kost AN,
Yurkevich AM,
Yudin LG,
Shchegoleva TA.
Zh. Obshch. Khim. 1955; 25: 943
15e
Doebner O,
von Miller W.
Ber. Dtsch. Chem. Ges. 1883; 16: 2470
15f
Bello Forero JS,
Jones JJr,
da Silva FM.
Curr. Org. Synth. 2016; 13: 157
15g
Kouznetsov VV.
Tetrahedron 2009; 65: 2721
15h
Verma S,
Verma D,
Jain LS.
Tetrahedron Lett. 2014; 55: 2409
15i
Le ST,
Yasuoka C,
Asahara H,
Nishiwaki N.
Molecules 2016; 21: 827
15j
Matsubara Y,
Hirakawa S,
Yamaguchi Y,
Yoshida Z.
Angew. Chem. Int. Ed. 2011; 50: 7670
16a
Roy S,
Nandi RK,
Ganai S,
Majumdar KC,
Das TK.
J. Pharm. Anal. 2017; 7: 19
16b
Majumdar KC,
Ponra S,
Nandi RK.
Tetrahedron Lett. 2012; 53: 1732
16c
Majumdar KC,
Nandi RK,
Ganai S,
Taher A.
Synlett 2011; 116
16d
Majumdar KC,
Nandi RK,
Ponra S.
Synlett 2012; 113
16e
Nandi RK,
Guillot R,
Kouklovsky C,
Vincent G.
Org. Lett. 2016; 18: 1716
16f
Majumdar KC,
Ponra S,
Ghosh T.
Synthesis 2012; 2079
16g
Majumdar KC,
De N,
Ghosh T,
Roy B.
Tetrahedron 2014; 70: 4827
16h
Majumdar KC,
Ponra S,
Ghosh T,
Sadhukhan R,
Ghosh U.
Eur. J. Med. Chem. 2014; 71: 306
17
Kreevoy MM,
Williams JM. Jr.
J. Am. Chem. Soc. 1968; 90: 6809
18
1,3,6-Trimethylpyrido[3,2-d ]pyrimidine-2,4(1H ,3H )-dione (3a); Typical Procedure
A mixture of compound 1a (0.100 g, 0.64 mmol) and ethyl vinyl ether (2 ; 0.139 g, 1.93 mmol) in DMSO (5 mL) was stirred for 5 min at r.t. PTSA (11 mg, 0.0645 mmol) was added, and the mixture was stirred at r.t. for another 30 min. The mixture was then heated at 80 °C for 2 h, until the starting material disappeared (Confirmed by TLC). The mixture was then allowed to cool at r.t., worked up in H2 O, and extracted with EtOAc (3 × 10 mL). The combined organic layer washed with brine, dried (Na2 SO4 ), filtered, and evaporated to dryness. The crude product was purified by column chromatography [silica gel, PE–EtOAc (7:3)] to give an off-white solid; yield: 0.112 g (0.546 mmol, 88%); mp 121–124 °C.
IR AT-IR (Neat): 1704, 1661, 1607, 1574, 1498, 1315, 749 cm –1 . 1 H NMR (400 MHz, CDCl3 ): δ = 2.70 (s, 3 H, –CH3 ), 3.54 (s, 3 H, –NCH3 ), 3.60 (s, 3 H, –NCH3 ), 7.45–7.54 (m, 2 H, ArH). 13 C NMR (100 MHz, CDCl3 ): δ = 23.9, 28.9, 30.5, 122.3, 128.7, 131.3, 135.8, 150.5, 154.5, 160.6. HRMS (ESI): m/z [M + H]+ calcd for C10 H12 N3 O2 : 206.0930; found: 206.0927.
19a
Viji M,
Nagarajan R.
Synthesis 2012; 253
19b
Theodoros S,
Konstantinos S,
Litinas E.
Tetrahedron Lett. 2013; 54: 6517
20
Jiang S,
Yang Z,
Guo Z,
Li Y,
Chen L,
Zhu Z,
Chen X.
Org. Biomol. Chem. 2019; 17: 7416
21
Su L.-L,
Zheng Y.-W,
Wang W.-G,
Chen B,
Wei X.-Z,
Wu L.-Z,
Tung C.-H.
Org. Lett. 2022; 24: 1180
22
Wang A,
Zhou X,
Yan J,
Hou T,
He M,
Qian J,
Zhou W,
Sun Y.
Eur. J. Org. Chem. 2023; 26: e202300590