CC BY-NC-ND 4.0 · Klin Padiatr
DOI: 10.1055/a-2251-5382
Diagnostic and Treatment Recommendation

Verbesserte Versorgungs-und Behandlungsoptionen für Patienten mit Hyperphagie-assoziierter Adipositas bei Bardet-Biedl-Syndrom

Improved Care and Treatment Options for Patients with Hyperphagia-Associated Obesity in Bardet-Biedl Syndrome
Metin Cetiner
1   Department of Pediatrics II, University Hospital Essen, Essen, Germany
,
Carsten Bergmann
2   Human genetic diagnostics, Medical Genetics Mainz, Mainz, Germany
,
Markus Bettendorf
3   Pediatric Endocrinology and Diabetes, Heidelberg University Hospital Department of General Pediatrics Pediatric Neurology Metabolic Diseases Gastroenterology and Nephrology, Heidelberg, Germany
,
Johanna Faust
4   Psychiatry and psychotherapy, Max-Planck-Institute for Psychiatry, München, Germany
,
Anja Gäckler
5   Department of Nephrology, University Hospital Essen, Essen, Germany
,
Bernarda Gillissen
6   Bardet Biedl syndrome Working Group, PRO RETINA Deutschland e V, Bonn, Germany
,
Matthias Hansen
7   KFH Kidney Center for Children and Adolescents, Clementine Children’s Hospital - Dr Christ’sche Foundation, Frankfurt am Main, Germany
,
Maximilian Kerber
6   Bardet Biedl syndrome Working Group, PRO RETINA Deutschland e V, Bonn, Germany
,
Günter Klaus
8   KFH Kidney Center for Children and Adolescents, University Hospitals Giessen and Marburg Campus Giessen, Marburg, Germany
,
Jens König
9   Department of General Pediatrics, University Hospital Münster, Münster, Germany
,
10   Department of Ophthalmology, University Hospital Tübingen Clinic of Ophthalmology, Tübingen, Germany
,
Jun Oh
11   Pediatric Nephrology, University Medical Center Hamburg-Eppendorf Department of Pediatrics, Hamburg, Germany
,
Annette Richter-Unruh
12   Department of Pediatric Endocrinology and Diabetology, University Hospital of the Ruhr University Bochum, Bochum, Germany
,
Julia von Schnurbein
13   Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
,
Martin Wabitsch
13   Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
,
Susann Weihrauch-Blüher
14   Department of Pediatrics I, University Hospital Halle, Halle, Germany
,
Lars Pape
1   Department of Pediatrics II, University Hospital Essen, Essen, Germany
› Author Affiliations
Funding Information Rhythm Pharmaceuticals — Funding of two conference meetings

Zusammenfassung

Das Bardet-Biedl-Syndrom (BBS) ist eine seltene, autosomal-rezessiv vererbte Multisystemerkrankung. Pathophysiologisch liegt eine Funktionsstörung des Primärziliums vor. Die Klinik ist heterogen und variabel und zeigt sich insbesondere in einer Retinadystrophie, Adipositas, Polydaktylie, Nierenauffälligkeiten, Hypogonadismus und Entwicklungsverzögerungen. Mit der Zulassung des Melanocortin 4-Rezeptor-Agonisten Setmelanotid kann erstmals eine medikamentöse Therapie der BBS-assoziierten Hyperphagie und der Adipositas angeboten werden. Hyperphagie und das starke Übergewicht bereits im Kindesalter stellen eine erhebliche Krankheitslast dar und gehen zudem mit einem Komorbiditäts- und erhöhtem Mortalitätsrisiko einher. Aufgrund der limitierten Erfahrungen mit Setmelanotid bei BBS soll hiermit ein tragfähiges umfassendes Therapiekonzept vorgelegt werden. Die Therapie sollte nach genetisch gesicherter Diagnose und individueller Indikationsstellung in Zentren mit spezieller Expertise erfolgen. Voraussetzungen für den bestmöglichen Therapieeffekt mit Setmelanotid ist die adäquate Aufklärung des Patienten über die Modalitäten der Therapie (tägliche subkutane Injektion) und mögliche unerwünschte Arzneimittelwirkungen. Des Weiteren ist gemeinsam mit dem Patienten die Einbeziehung von Psychologen, Ernährungsberatern und Pflegediensten (Support bei der Applikation) zu erwägen. Die Beurteilung des Therapieerfolgs sollte mit geeigneten Outcome-Measurements erfolgen und zur Evidenzförderung zentralisiert mittels etablierter Register-Infrastrukturen erfasst werden.

Abstract

Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive multisystem disease. The pathophysiological origin is a dysfunction of the primary cilium. Clinical symptoms are heterogeneous and variable: retinal dystrophy, obesity, polydactyly, kidney abnormalities, hypogenitalism and developmental delays are the most common features. By the approval of the melanocortin 4 receptor agonist setmelanotide, a drug therapy for BBS-associated hyperphagia and obesity can be offered for the first time. Hyperphagia and severe obesity represent a considerable burden and are associated with comorbidity and increased mortality risk. Due to the limited experience with setmelanotide in BBS, a viable comprehensive therapy concept is to be presented. Therapy decision and management should be conducted in expert centers. For best therapeutic effects with setmelanotide adequate information of the patient about the modalities of the therapy (daily subcutaneous injection) and possible adverse drug events are necessary. Furthermore, the involvement of psychologists, nutritionists and nursing services (support for the application) should be considered together with the patient. The assessment of therapy response should be carried out with suitable outcome measurements and centrally reported to an adequate register.



Publication History

Article published online:
08 March 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Melluso A, Secundolfo F, Capolongo G. et al. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther Clin Risk Manag 2023; 19: 115-132
  • 2 Bardet G. Sur un syndrome d’obésité congénitale avec polydactylie et rétinite pigmentaire (contribution à l’étude des formes cliniques de l’obésité hypophysaire). Paris: Thesis; 1920. Available from: http://ark.bnf.fr/ark:/12148/cb368515336
  • 3 Biedl A. Ein Geschwisterpaar mit adiposo-genitaler Dystrophie. Dtsch Med Wochenschr 1922; 48: 1630
  • 4 Florea L, Caba L, Gorduza EV. Bardet-Biedl syndrome-multiple kaleidoscope images: insight into mechanisms of genotype-phenotype correlations. Genes 2021; 12: 1353
  • 5 The human protein atlas. Available from: https://www.proteinatlas.org (keyword: primary cilium BBS). Accessed May 2023
  • 6 Zhou Z, Qui H, Castro-Araya RF. et al Impaired cooperation between IFT74/BBS22-IFT81 and IFT25-IFT27/BBS19 causes Bardet-Biedl syndrome. Hum Mol Genet 2022; 31: 1681-1693 DOI: 10.1093/hmg/ddab354.. 2022;31(10):1681–1693
  • 7 Seo S, Baye LM, Schulz NP. et al. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A 2010; 107: 1488-1493
  • 8 Álvarez-Satta M, Castro-Sánchez S, Valverde D. et al. Syndrome as a chaperonopathy: dissecting the major role of chaperonin-like BBS proteins (BBS6-BBS10-BBS12). Front Mol Biosci 2017; 4: 55
  • 9 M’hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of bardet-biedl syndrome. Mol Syndromol 2014; 5: 51-56
  • 10 Forsyth R, Gunay-Aygun M, Adam MP. et al Bardet-Biedl syndrome overview. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;. 1993 2003 Jul 14 [updated 2023 Mar 23]
  • 11 Zacchia M, Blanco FDV, Trepiccione F. et al. Nephroplex: a kidney-focused NGS panel highlights the challenges of PKD1 sequencing and identifies a founder BBS4 mutation. J Nephrol 2021; 34: 1855-1874
  • 12 Harville HM, Held S, Diaz-Font A. et al. Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. J Med Genet 2010; 47: 262-267
  • 13 Beales PL, Warner AM, Hitman GA. et al. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 1997; 34: 92-98
  • 14 Farag TI, Teebi AS. High incidence of Bardet Biedl syndrome among the Bedouin. Clin Genet 1989; 36: 463-464
  • 15 Hjortshøj TD, Grønskov K, Brøndum-Nielsen K. et al. A novel founder BBS1 mutation explains a unique high prevalence of Bardet-Biedl syndrome in the Faroe Islands. Br J Ophthalmol 2009; 93: 409-413
  • 16 Wingfield JL, Lechtreck KF, Lorentzen E. Trafficking of ciliary membrane proteins by the intraflagellar transport/ BBSome machinery. Essays Biochem 2018; 62: 753-763
  • 17 Senatore E, Iannucci R, Chiuso F. et al. Pathophysiology of primary cilia: signaling and proteostasis regulation. Front Cell Dev Biol 2022; 10: 833086
  • 18 Bateman A, Martin MJ, Orchard S. et al. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 2023; 51: D523-D531
  • 19 Johnson CA, Collis SJ. Ciliogenesis and the DNA damage response: a stressful relationship. Cilia. 2016; 5: 19
  • 20 Cui C, Chatterjee B, Lozito TP. et al. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 2013; 11: e1001720
  • 21 Novas R, Cardenas-Rodriguez M, Irigoín F. et al. Bardet-Biedl syndrome: is it only cilia dysfunction?. FEBS Lett 2015; 589: 3479-3491
  • 22 Pruski M, Hu L, Yang C. et al. Roles for IFT172 and primary cilia in cell migration, cell division, and neocortex development. Front Cell Dev Biol 2019; 7: 287 DOI: 10.3389/fcell.2019.00287.
  • 23 CFAP418 cilia and flagella associated protein 418 [Homo sapiens (human)] Gene ID: 157657; updated on 29-Mar-2023. Available from: https://www.ncbi.nlm.nih gov/gene/157657. Accessed May 2023.
  • 24 Kanie T, Abbott KL, Mooney NA. et al. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev Cell 2017; 42: 22-36.e12
  • 25 Mannella V, Quilici G, Nigro EA. et al. The N-terminal domain of NPHP1 folds into a monomeric left-handed antiparallel three-stranded coiled coil with anti-apoptotic function. ACS Chem Biol 2019; 14: 1845-1854
  • 26 Wormser O, Gradstein L, Yogev Y. et al. SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet-Biedl syndrome. Eur J Hum Genet 2019; 27: 928-940
  • 27 Lee H, Moon KH, Song J. et al. Tissue-specific requirement of sodium channel and clathrin linker 1 (Sclt1) for ciliogenesis during limb development. Front Cell Dev Biol 2022; 10: 1058895 DOI: 10.3389/fcell.2022.1058895.
  • 28 Milani D, Cerutti M, Pezzani L. et al. Syndromic obesity: clinical implications of a correct diagnosis. Ital J Pediatr 2014; 40: 33
  • 29 Sherafat-Kazemzadeh R, Ivey L, Khan SR. et al. Hyperphagia among patients with Bardet-Biedl syndrome. Pediatr Obes 2013; 8: e64-e67
  • 30 Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet 2013; 21: 8-13
  • 31 Forsythe E, Kenny J, Bacchelli C. et al. Managing Bardet-Biedl syndrome-now and in the future. Front Pediatr 2018; 6: 23
  • 32 Beales PL, Elcioglu N, Woolf AS. et al. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 1999; 36: 437-446
  • 33 Denniston AK, Beales PL, Tomlins PJ. et al. Evaluation of visual function and needs in adult patients with bardet–biedl syndrome. Retina 2014; 34: 2282-2289
  • 34 Pomeroy J, Krentz AD, Richardson JG. Bardet-Biedl syndrome: Weight patterns and genetics in a rare obesity syndrome. Pediatr Obes 2021; 16: e12703 DOI: 10.1111/ijpo.12703..
  • 35 Rooryck C, Lacombe D. Syndrome de Bardet-Biedl. Encyclopédie Orphanet. Ann Endocrinol (Paris) 2008; 69: 463-471
  • 36 Olson AJ, Krentz AD, Finta KM. et al. Thoraco-Abdominal Abnormalities in Bardet-Biedl Syndrome: Situs Inversus and Heterotaxy. J Pediatr 2019; 204: 31-37 DOI: 10.1016/j.jpeds.2018.08.068..
  • 37 Pugnaloni F, Versacci P, Marino B. et al. Atrioventricular canal defect is the classic congenital heart disease in Bardet-Biedl syndrome. Ann Hum Genet 2021; 85: 101-102 DOI: 10.1111/ahg.12413.
  • 38 Moore SJ, Green JS, Fan Y. et al Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A 2005; 1 132A: 352-360 DOI: 10.1002/ajmg.a.30406.
  • 39 Seo S, Guo DF, Bugge K. et al. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 2009; 18: 1323-1331
  • 40 Guo DF, Rahmouni K. Molecular basis of the obesity associated with Bardet-Biedl syndrome. Trends Endocrinol Metab 2011; 22: 286-293
  • 41 Wang L, Liu Y, Stratigopoulos G. et al. Bardet-Biedl syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons. J Clin Invest 2021; 131: e146287
  • 42 Guo DF, Cui H, Zhang Q. et al. The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane. PLoS Genet 2016; 12: e1005890
  • 43 Feuillan PP, Ng D, Han JC. et al. Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab 2011; 96: E528-E535
  • 44 da Fonseca AC, Mastronardi C, Johar A. et al. Genetics of non-syndromic childhood obesity and the use of high-throughput DNA sequencing technologies. J Diabetes Complications 2017; 31: 1549-1561
  • 45 Yazdi FT, Clee SM, Meyre D. Obesity genetics in mouse and human: back and forth, and back again. PeerJ 2015; 3: e856
  • 46 Farooqi IS, O’Rahilly S. Mutations in ligands and receptors of the leptin-melanocortin pathway that
  • 47 Vaisse C, Reiter JF, Berbari NF. Cilia and Obesity. Cold Spring Harb Perspect Biol 2017; 9: a028217
  • 48 Kühnen P, Krude H, Biebermann H. Melanocortin-4 receptor signalling: importance for weight regulation and obesity treatment. Trends Mol Med 2019; 25: 136-148
  • 49 Huszar D, Lynch CA, Fairchild-Huntress V. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131-141
  • 50 Farooqi IS. Monogenic obesity syndromes provide insights into the hypothalamic regulation of appetite and associated behaviors. Biol Psychiatry 2022; 91: 856-859
  • 51 Fachinformation Imcivree (Stand 2023)
  • 52 Haqq AL, Chung WK, Dollfus D. et al Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period. Lancet Diabetes Endocrinol 2022; 10: 859-868 Published Erratum: Lancet Diabetes Endocrinol 2023 Feb;11(2):e2
  • 53 Clément K, van den Akker E, Argente J. et al. Setmelanotide POMC and LEPR Phase 3 Trial Investigators. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol 2020; 8: 960-970 DOI: 10.1016/S2213-8587(20)30364-8..
  • 54 Wabitsch M, Farooqi S, Flück CE. et al Natural History of Obesity Due to POMC, PCSK1, and LEPR Deficiency and the Impact of Setmelanotide. J Endocr Soc 2022; 15 6: bvac057 DOI: 10.1210/jendso/bvac057.
  • 55 Ervin C, Norcross L, Mallya UG. et al. Interview-Based Patient- and Caregiver-Reported Experiences of Hunger and Improved Quality of Life with Setmelanotide Treatment in Bardet-Biedl Syndrome. Adv Ther 2023; 40: 2394-2411 DOI: 10.1007/s12325-023-02443-y.
  • 56 Forsythe E, Haws RM, Argente J. et al Quality of life improvements following one year of setmelanotide in children and adult patients with Bardet-Biedl syndrome: phase 3 trial results. Orphanet J Rare Dis 2023; 16 18: 12 DOI: 10.1186/s13023-022-02602-4.
  • 57 Horesh A, Tsur AM, Bardugo A. et al. Adolescent and Childhood Obesity and Excess Morbidity and Mortality in Young Adulthood – a Systematic Review. Curr Obes Rep 2021; 10: 301-310 DOI: 10.1007/s13679-021-00439-9.