RSS-Feed abonnieren
DOI: 10.1055/a-2255-5254
The Influence of Pedaling Frequency on Blood Lactate Accumulation in Cycling Sprints
Abstract
Anaerobic performance diagnostics in athletes relies on accurate measurements of blood lactate concentration and the calculation of blood lactate accumulation resulting from glycolytic processes. In this study, we investigated the impact of pedaling frequency on blood lactate accumulation during 10-second maximal isokinetic cycling sprints. Thirteen trained males completed five 10-second maximal isokinetic cycling sprints on a bicycle ergometer at different pedaling frequencies (90 rpm, 110 rpm, 130 rpm, 150 rpm, 170 rpm) with continuous power and frequency measurement. Capillary blood samples were taken pre-exercise and up to 30 minutes post-exercise to determine the maximum blood lactate concentration.
Blood lactate accumulation was calculated as the difference between maximal post-exercise and pre-start blood lactate concentration. Repeated measurement ANOVA with Bonferroni-adjusted post hoc t-tests revealed significant progressive increases in maximal blood lactate concentration and accumulation with higher pedaling frequencies (p<0.001; η2+>+0.782).
The findings demonstrate a significant influence of pedaling frequency on lactate accumulation, emphasizing its relevance in anaerobic diagnostics. Optimal assessment of maximal lactate formation rate is suggested to require a pedaling frequency of at least 130 rpm or higher, while determining metabolic thresholds using the maximal lactate formation rate may benefit from a slightly lower pedaling frequency.
Publikationsverlauf
Eingereicht: 11. August 2023
Angenommen: 23. Januar 2024
Artikel online veröffentlicht:
22. April 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. Biomed Res Int 2013; 2013: 589361
- 2 Baker JS, McCormick MC, Robergs RA. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J Nutr Metab 2010; 2010: 905612
- 3 Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med 2001; 31: 725-741
- 4 Beneke R, Jumah MD, Leithäuser RM. Modelling the lactate response to short-term all out exercise. Dyn Med: DM 2007; 6: 10
- 5 Jacobs I, Tesch PA, Bar-Or O. et al. Lactate in human skeletal muscle after 10 and 30 s of supramaximal exercise. J Appl Physiol Respir Environ Exerc Physiol 1983; 55: 365-367
- 6 Yang W-H, Park S-Y, Kim T. et al. A modified formula using energy system contributions to calculate pure maximal rate of lactate accumulation during a maximal sprint cycling test. Front Physiol 2023; 14: 1-10
- 7 Dunst AK, Manunzio C, Feldmann A. et al. Applications of near-infrared spectroscopy in “anaerobic” diagnostics – SmO 2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maximal pedalling rate. Biol Sport 2023; 40: 1019-1031
- 8 Dekerle J, Barstow TJ, Regan L. et al. The critical power concept in all-out isokinetic exercise. Journal of science and medicine in sport 2014; 17: 640-644
- 9 Laurent CM, Meyers MC, Robinson CA. et al. Cross-validation of the 20- versus 30-s Wingate anaerobic test. Eur J Appl Physiol 2007; 100: 645-651
- 10 Ayalon A, Inbar O, Bar-Or O. Relationships Among measurements of explosive strength and anaerobic power. Biomechanics IV. Palgrave; London: 1974: 572-577
- 11 Monod H, Scherrer J. The Work Capacity Of A Synergic Muscular Group. Ergonomics 1965; 8: 329-338
- 12 Mader A. Aussagekraft der Laktatleistungskurve in Kombination mit anaeroben Tests zur Bestimmung der Stoffwechselkapazität. In: Clasing D, Weicker H, Böning D (eds). Stellenwert der Laktatbestimmung in der Leistungsdiagnostik: Symposium des Deutschen Sportärztebundes, Berlin, December 13-15, 1991]; 32 Tabellen. Stuttgart, Jena, New York: G. Fischer; 1994: 133-152
- 13 Adam J, Öhmichen M, Öhmichen E. et al. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport 2015; 32: 97-102
- 14 Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model 2014; 11: 25
- 15 Dunst AK, Hesse C, Feldmann A. et al. A Novel Approach to Determining the Alactic Time Span in Connection with Assessment of the Maximal Rate of Lactate Accumulation in Elite Track Cyclists. Int J Sports Physiol Perform 2023; 18: 157-163
- 16 Mader A. Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungsszzustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs (Habilitationsschrift). Köln: Deutsche Sporthochschule; 1984
- 17 Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol 2003; 88: 317-338
- 18 Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold”. Int J Sports Med 1986; 7: 45-65
- 19 Wackerhage H, Gehlert S, Schulz H. et al. Lactate Thresholds and the Simulation of Human Energy Metabolism: Contributions by the Cologne Sports Medicine Group in the 1970s and 1980s. Front Physiol 2022; 13: 899670
- 20 Fuentes T, Ponce-González JG, Morales-Alamo D. et al. Isoinertial and isokinetic sprints: Muscle signalling. Int J Sports Med 2013; 34: 285-292
- 21 Nitzsche N, Baumgärtel L, Schulz H. Comparison of maximum lactate formation rates in ergometer sprint and maximum strength loads. Dtsch Z Sportmed 2018; 69: 13-18
- 22 Baron R, Bachl N, Petschnig R. et al. Measurement of maximal power output in isokinetic and non-isokinetic cycling. A comparison of two methods. Int J Sports Med 1999; 20: 532-537
- 23 Hommel J, Öhmichen S, Rudolph UM. et al. Effects of six-week sprint interval or endurance training on calculated power in maximal lactate steady state. Biol Sport 2019; 36: 47-54
- 24 Hauser T, Mäbert A, Schulz H. Influence of exercise duration on the maximum lactate production rate. In: Schulz H (ed). Exercise, Sports and Health: Second Joint Research Conference [of the Universities of Gloucestershire and Chemnitz] in Chemnitz, Germany, September 9-11, 2009. Chemnitz: Universitätsverlag Chemnitz; 2011: 149-154
- 25 Jones NL, McCartney N, Graham T. et al. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol (1985) 1985; 59: 132-136
- 26 Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988
- 27 Thompson KG, MacLaren DP, Lees A. et al. The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. Eur J Appl Physiol 2003; 88: 438-443
- 28 Beneke R, Hütler M, Jung M. et al. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol (1985) 2005; 99: 499-504
- 29 Nitzsche N, Zschäbitz D, Baumgärtel L, Schulz H. The Effect of Isokinetic Resistance Load on Glycolysis Rate. In: Ferrauti A, Platen P, Grimminger-Seidensticker E, Jaitner T, Bartmus U, Becher L, Marées M de, Mühlbauer T, Schauerte A, Wiewelhove T, Tsolakidis E (eds). 22nd Annual congress of the European College of Sport Science:5th-8th July 2017, MetropolisRuhr – Germany: Book of abstracts. Bochum: Westdeutscher Universitaetsverlag GmbH; 2017: 558
- 30 McCartney N, Heigenhauser GJ, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol Respir Environ Exerc Physiol 1983; 55: 218-224
- 31 Dorel S, Hautier CA, Rambaud O. et al. Torque and power-velocity relationships in cycling: Relevance to track sprint performance in world-class cyclists. Int J Sports Med 2005; 26: 739-746
- 32 Abbiss CR, Peiffer JJ, Laursen PB. Optimal cadence selection during cycling. International SportMed Journal 2009; 10: 1-15
- 33 Sargeant AJ. Human power output and muscle fatigue. Int J Sports Med 1994; 15: 116-121
- 34 Dunst AK, Hesse C, Ueberschär O. et al. Fatigue-Free Force-Velocity and Power-Velocity Profiles for Elite Track Sprint Cyclists: The Influence of Duration. Gear Ratio and Pedalling Rates. Sports (Basel) 2022; 10: 1-11
- 35 Beelen A, Sargeant AJ. Effect of fatigue on maximal power output at different contraction velocities in humans. J Appl Physiol 1985; 1991: 2332-2337
- 36 Debraux P, Manolova AV, Soudain-Pineau M. et al. Maximal torque and power pedaling rate relationships for high level BMX riders in field test. J Sci Cycling 2013; 2: 51-57
- 37 Gardner AS, Martin JC, Martin DT. et al. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol 2007; 101: 287-292
- 38 Böning D, Maassen N, Steinach M. The efficiency of muscular exercise. Dtsch Z Sportmed 2017; 68: 203-214
- 39 Blake OM, Wakeling JM. Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands. J Neurophysiol 2015; 114: 3283-3295
- 40 Böning D, Gönen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 1984; 5: 92-97
- 41 Margaria R. Biomechanics and energetics of muscular exercise. Oxford: Clarendon Press; 1976
- 42 Kohler G, Boutellier U. The generalized force-velocity relationship explains why the preferred pedaling rate of cyclists exceeds the most efficient one. Eur J Appl Physiol 2005; 94: 188-195
- 43 MacIntosh BR, Neptune RR, Horton JF. Cadence, power, and muscle activation in cycle ergometry. Med Sci Sports Exerc 2000; 32: 1281-1287
- 44 Dantas JL, Smirmaul BPC, Altimari LR. et al. The efficiency of pedaling and the muscular recruitment are improved with increase of the cadence in cyclists and non-cyclists. Electromyogr Clin Neurophysiol 2009; 49: 311-319
- 45 Sanderson DJ, Martin PE, Honeyman G. et al. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. J Electromyogr Kinesiol 2006; 16: 642-649
- 46 Baum BS, Li L. Lower extremity muscle activities during cycling are influenced by load and frequency. J Electromyogr Kinesiol 2003; 13: 181-190
- 47 Hill AV. The maximum work and mechanical efficiency of human muscles, and their most economical speed. J Physiol 1922; 56: 19-41
- 48 Sargeant AJ. Structural and functional determinants of human muscle power. Exp Physiol 2007; 92: 323-331
- 49 MacIntosh BR, Herzog W, Suter E. et al. Human skeletal muscle fibre types and force: Velocity properties. Eur J Appl Physio Occup Physiol 1993; 67: 499-506
- 50 Bottinelli R. Functional heterogeneity of mammalian single muscle fibres: Do myosin isoforms tell the whole story?. Pflugers Archiv: Eur J Physiol 2001; 443: 6-17
- 51 Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 1990; 116: 1-76
- 52 Essén-Gustavsson B, Henriksson J. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise. Acta Physiol Scand 1984; 120: 505-515
- 53 Plomgaard P, Penkowa M, Leick L. et al. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles. J Appl Physiol 1985; 2006: 817-825
- 54 Haun CT, Vann CG, Osburn SC. et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PloS one 2019; 14: e0215267
- 55 Tesch PA, Thorsson A, Essén-Gustavsson B. Enzyme activities of FT and ST muscle fibers in heavy-resistance trained athletes. J Appl Physiol 1985; 1989: 83-87
- 56 Bottinelli R, Pellegrino MA, Canepari M. et al. Specific contributions of various muscle fibre types to human muscle performance: An in vitro study. J Electromyogr Kinesiol 1999; 9: 87-95
- 57 Henneman E, Mendell LM. Functional organization of motoneurone pool and its inputs. In: Brookhardt JM, Mountcastle VB, Brooks VB, Geiger SR (eds). Handbook of Physiology: Section 1, The Nervous System, Volume II, Motor Control. Rockville, MD, USA: American Physiological Society; 1981
- 58 Annaheim S, Boutellier U, Kohler G. The energetically optimal cadence decreases after prolonged cycling exercise. Eur J Appl Physiol 2010; 109: 1103-1110
- 59 Brisswalter J, Hausswirth C, Smith D. et al. Energetically optimal cadence vs. freely-chosen cadence during cycling: Effect of exercise duration. Int J Sports Med 2000; 21: 60-64
- 60 Bessot N, Moussay S, Laborde S. et al. The role of the slope of oxygen consumption and EMG Activity on freely chosen pedal rate selection. Eur J Appl Physiol 2008; 103: 195-202
- 61 Heck H, Schulz H. Methoden der anaeroben Leistungsdiagnostik. Dtsch Z Sportmed 2002; 53: 202-212