Zeitschrift für Phytotherapie 2024; 45(04): 157-162
DOI: 10.1055/a-2276-0265
Forschung

Pflanzliche Polyphenole sind Regulatoren der Verdauung mit therapeutischen Effekten

Plant polyphenols as regulators of digestion with therapeutic effects
Matthias F. Melzig

Zusammenfassung

Polyphenole hemmen unspezifisch hydrolytische Enzyme, die am Verdauungsprozess beteiligt sind, z.B. Amylasen, Proteasen, Lipasen. Dadurch wird der Verdauungsprozess verzögert, was sich in einer unvollständigen Resorption von Monosacchariden, Fettsäuren und Aminosäuren sowie in einer erhöhten Menge von unverdauten Makronährstoffen im Ileum und Kolon äußert. Dadurch wird die postprandiale Blutkonzentration von Monosacchariden, Fettsäuren und Aminosäuren gesenkt und verschiedene Stoffwechselwege laufen langsamer ab. Eine polyphenolreiche Ernährung ist damit eine wirksame Strategie zur Verbesserung der Gesundheit von Patienten mit metabolischem Syndrom.

Abstract

Polyphenols non-specifically inhibit hydrolytic enzymes involved in the digestive process, e. g. amylases, proteases, lipases. Thus, the digestive process is delayed, resulting in incomplete absorption of monosaccharides, fatty acids and amino acids as well as increased amounts of undigested macronutrients in the ileum and colon. As a result, the postprandial blood concentration of monosaccharides, fatty acids and amino acids is reduced and various metabolic pathways run more slowly. A polyphenol-rich diet is therefore an effective strategy for improving the health of patients with metabolic syndrome.



Publikationsverlauf

Artikel online veröffentlicht:
13. August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ozdal T, Yalcinkaya IE, Toydemir G. et al. Polyphenol-Protein Interactions and Changes in Functional Properties and Digestibility. In: Melton L, Shahidi F, Varelis PBT, eds. Encyclopedia of Food Chemistry. Oxford: Academic Press; 2019: 566-577
  • 2 Yilmaz H, Gultekin Subasi B, Celebioglu HU. et al. Chemistry of protein-phenolic interactions toward the microbiota and microbial infections. Front Nutr 2022; 9: 914118
  • 3 McDougall GJ, Kulkarni NN, Stewart D. Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2008; 34: 73-80
  • 4 Leri M, Scuto M, Ontario ML. et al. Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 2020; 21: 1250
  • 5 Martinez-Gonzalez AI, Díaz-Sánchez AG, de la Rosa LA. et al. Polyphenolic compounds and digestive enzymes: in vitro non-covalent interactions. Molecules 2017; 22: 669
  • 6 Maljaars PW, Peters HP, Mela DJ. et al. Ileal brake: a sensible food target for appetite control. A review. Physiol Behav 2008; 95: 271-281
  • 7 Ratanpaul V, Williams BA, Black JL. et al. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 2019; 13: 2745-2754
  • 8 Shin HS, Ingram JR, McGill AT. et al. Lipids, CHOs, proteins: can all macronutrients put a “brake” on eating?. Physiol Behav 2013; 120: 114-123
  • 9 Freire RH, Alvarez-Leite JI. Appetite control: hormones or diet strategies?. Curr Opin Clin Nutr Metab Care 2020; 23: 328-335
  • 10 Yamashita Y. Physiological functions of poorly absorbed polyphenols via the glucagon-like peptide 1. Biosci Biotechnol Biochem 2024; 88: 493-498
  • 11 Madsbad S. Impact of postprandial glucose control on diabetes-related complications: How is the evidence evolving?. J Diabetes Complications 2016; 30: 374-385
  • 12 Boivin M, Flourie B, Rizza RA. et al. Gastrointestinal and metabolic effects of amylase inhibition in diabetics. Gastroenterology 1988; 94: 387-394
  • 13 Russell WR, Baka A, Björk I. et al. Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr 2016; 56: 541-590
  • 14 Koike D, Yamadera K, DiMagno EP. Effect of wheat amylase inhibitor on canine carbohydrate digestion, gastrointestinal function, and pancreatic growth. Gastroenterology 1995; 108: 1221-1229
  • 15 Kataoka K, DiMagno EP. Effect of prolonged intraluminal alpha-amylase inhibition on eating, weight, and the small intestine of rats. Nutrition 1999; 15: 123-129
  • 16 Castro-Barquero S, Lamuela-Raventós RM, Doménech M. et al. Relationship between Mediterranean dietary polyphenol intake and obesity. Nutrients 2018; 10: 1523
  • 17 Hanhineva K, Törrönen R, Bondia-Pons I. et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11: 1365-1402
  • 18 Melzig MF, Funke I. Inhibitors of alpha-amylase from plants - a possibility to treat diabetes mellitus type II by phytotherapy?. Wien Med Wochenschr 2007; 157: 320-324
  • 19 Sekhon-Loodu S, Rupasinghe HPV. Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front Nutr 2019; 6: 53
  • 20 Carey MC, Hernell O. Digestion and absorption of fat. Semin Gastroint Dis 1992; 3: 189-208
  • 21 Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med 2015; 81: 771-783
  • 22 Schreck K, Melzig MF. Traditionally used plants in the treatment of diabetes mellitus: screening for uptake inhibition of glucose and fructose in the Caco2-cell model. Front Pharmacol 2021; 12: 692566
  • 23 Schreck K, Melzig MF. Intestinal saturated long-chain fatty acid, glucose and fructose transporters and their inhibition by natural plant extracts in Caco-2 cells. Molecules 2018; 23: 2544
  • 24 Buchholz T, Melzig MF. Medicinal plants traditionally used for treatment of obesity and diabetes mellitus - screening for pancreatic lipase and α-amylase inhibition. Phytother Res 2016; 30: 260-266
  • 25 Siegień J, Buchholz T, Popowski D. et al. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem 2021; 355: 129414
  • 26 Payab M, Hasani-Ranjbar S, Shahbal N. et al. Effect of the herbal medicines in obesity and metabolic syndrome: A systematic review and meta-analysis of clinical trials. Phytother Res 2020; 34: 526-545
  • 27 Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 2016; 17: 573-586
  • 28 Griffiths DW. The inhibition of digestive enzymes by polyphenolic compounds. Adv Exp Med Biol 1986; 199: 509-516
  • 29 Gonçalves R, Soares S, Mateus N. et al. Inhibition of trypsin by condensed tannins and wine. J Agric Food Chem 2007; 55: 7596-7601
  • 30 Zhang H, Lu M, Jiang H. et al. Evaluation inhibitory activity of catechins on trypsin by capillary electrophoresis-based immobilized enzyme microreactor with chromogenic substrate. J Sep Sci 2020; 43: 3136-3145
  • 31 Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 2004; 37: 287-303
  • 32 Maugeri A, Lombardo GE, Cirmi S. et al. Pharmacology and toxicology of tannins. Arch Toxicol 2022; 96: 1257-1277
  • 33 Chung KT, Wong TY, Wei CI. et al. Tannins and human health: a review. Crit Rev Food Sci Nutr 1998; 38: 421-464
  • 34 Rana A, Samtiya M, Dhewa T. et al. Health benefits of polyphenols: A concise review. J Food Biochem 2022; 46: e14264