Synthesis, Inhaltsverzeichnis Synthesis 2024; 56(15): 2339-2346DOI: 10.1055/a-2284-9845 paper Photoredox-Catalyzed Oxidative C–H Alkylation of Glycine Derivatives with 4-Alkyl-1,4-dihydropyridines Madala Hari Babu‡ a College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea , Eunbin Jang‡ b College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea , Hyesu Jang b College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea , Sang Kyum Kim b College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea , Jaehoon Sim ∗ a College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea c Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea d Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract Oxidative α-C(sp3)–H alkylation of N-arylated glycine derivatives with 4-alkyldihydropyridine derivatives (alkyl-DHPs) as versatile alkyl radical precursors has been developed. Utilizing visible-light-driven photoredox catalysis and ammonium persulfate as an oxidizing agent, this methodology facilitates the site-selective alkylation of glycine derivatives, enabling the site-selective alkylation of peptides. The reaction exhibits broad substrate scope, including various alkyl radicals and acid-labile functional groups. This approach expands the synthetic toolbox in peptide chemistry, offering a mild and efficient method for the synthesis of modified peptides. Key words Key wordsunnatural amino acids - photocatalysis - 4-alkyl-1,4-dihydropyridines - persulfate - peptides Volltext Referenzen References 1a Gray BP, Brown KC. Chem. Rev. 2014; 114: 1020 1b Lau JL, Dunn MK. Bioorg. Med. Chem. 2018; 26: 2700 2a Zorzi A, Deyle K, Heinis C. Curr. Opin. Chem. Biol. 2017; 38: 24 2b Fosgerau K, Hoffmann T. Drug Discovery Today 2015; 20: 122 2c Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382 3a Vinogradov AA, Yin Y, Suga H. J. Am. Chem. Soc. 2019; 141: 4167 3b Otvos L, Wade JD. Front. Chem. 2014; 2: 8 4a Walsh CT, Garneau-Tsodikova S, Gatto GJ. Angew. Chem. Int. Ed. 2005; 44: 7342 4b Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Angew. Chem. Int. Ed. 2019; 58: 4810 4c Salwiczek M, Nyakatura EK, Gerling UI. M, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135 4d Guillen Schlippe YV, Hartman MC. T, Josephson K, Szostak JW. J. Am. Chem. Soc. 2012; 134: 10469 4e Krall N, da Cruz FP, Boutureira O, Bernardes GJ. L. Nat. Chem. 2016; 8: 103 4f Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. RSC Adv. 2021; 11: 38126 5a Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974 5b DeGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863 6a Song Y, Zhang Z, Cao Y, Yu Z. ChemBioChem 2023; 24: e202200497 6b Inokuma T. Chem. Pharm. Bull. 2021; 69: 303 6c Tailhades J. Int. J. Pept. Res. Ther. 2022; 28: 1 6d Yuan Z, Liu X, Liu C, Zhang Y, Rao Y. Molecules 2020; 25: 5270 6e Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Org. Chem. Front. 2021; 8: 6720 6f Kordbacheh S, Kasko AM. Polym. Int. 2021; 70: 889 6g Roche SP. Synthesis 2021; 53: 2767 7a Chalker JM, Bernardes GJ. L, Lin YA, Davis BG. Chem. Asian J. 2009; 4: 630 7b Gunnoo SB, Madder A. ChemBioChem 2016; 17: 529 7c Vara BA, Li X, Berritt S, Walters CR, Petersson EJ, Molander GA. Chem. Sci. 2018; 9: 336 7d Dhanjee HH, Saebi A, Buslov I, Loftis AR, Buchwald SL, Pentelute BL. J. Am. Chem. Soc. 2020; 142: 9124 7e Bondalapati S, Jbara M, Brik A. Nat. Chem. 2016; 8: 407 7f King TA, Kandemir JM, Walsh SJ, Spring DR. Chem. Soc. Rev. 2021; 50: 39 7g Vantourout JC, Adusumalli SR, Knouse KW, Flood DT, Ramirez A, Padial NM, Istrate A, Maziarz K, Degruyter JN, Merchant RR, Qiao JX, Schmidt MA, Deery MJ, Eastgate MD, Dawson PE, Bernardes GJ. L, Baran PS. J. Am. Chem. Soc. 2020; 142: 17236 7h Yamada H, Imoto T, Fujita K, Okazaki K, Motomura M. Biochemistry 1981; 20: 4836 7i Rawale DG, Thakur K, Sreekumar P, Sajeev TK, Ramesh A, Adusumalli SR, Mishra RK, Rai V. Chem. Sci. 2021; 12: 6732 7j Dardir AH, Hazari N, Miller SJ, Shugrue CR. Org. Lett. 2019; 21: 5762 7k Meena R, Shekhar S, Ansari SB, Tiwari A, Lal J, Reddy DN. Chem. Asian J. 2023; 18: e202300638 7l Watanabe S, Wada Y, Kawano M, Higashibayashi S, Sugai T, Hanaya K. Chem. Commun. 2023; 13026 7m Tower SJ, Hetcher WJ, Myers TE, Kuehl NJ, Taylor MT. J. Am. Chem. Soc. 2020; 142: 9112 7n Seki Y, Ishiyama T, Sasaki D, Abe J, Sohma Y, Oisaki K, Kanai M. J. Am. Chem. Soc. 2016; 138: 10798 7o Lee JC, Cuthbertson JD, Mitchell NJ. Org. Lett. 2023; 25: 5459 7p Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174 7q Roch AL, Hébert M, Gagnon A. Eur. J. Org. Chem. 2020; 5363 7r Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Chem. Sci. 2023; 14: 7782 8a Zhao P, Huang D, Wang F, Han T, Yang M, Wang KH, Hu Y. Appl. Organomet. Chem. 2022; 36: e6479 8b Li S, Yang X, Wang Y, Zhou H, Zhang B, Huang G, Zhang Y, Li Y. Adv. Synth. Catal. 2018; 360: 4452 8c Schörgenhumer J, Chowdhury R, Waser M. Chem. Data Collect. 2017; 11–12: 36 8d Wang GZ, Liu DG, Liu MT, Fu Y. Green Chem. 2021; 23: 5082 8e Ke M, Liu Z, Huang G, Huang G, Wang J, Tao Y, Chen F. Org. Lett. 2020; 22: 4135 8f Wei XH, Li ZH, Zhao LB, Zhang P, Zhou HC, Wang YB. RSC Adv. 2019; 9: 32081 9a Madala HB, Sim J. Eur. J. Org. Chem. 2022; e202200859 9b Wang C, Qi R, Wang R, Xu Z. Acc. Chem. Res. 2023; 56: 2110 9c Wei WT, Song RJ, Li JH. Adv. Synth. Catal. 2014; 356: 1703 9d Li K, Wu Q, Lan J, You J. Nat. Commun. 2015; 6: 8404 9e Segundo MS, Guerrero I, Correa A. Org. Lett. 2017; 19: 5288 9f Yang X, Xie Z, Li Y, Zhang Y. Chem. Sci. 2020; 11: 4741 9g Tian H, Xu W, Liu Y, Wang Q. Org. Lett. 2020; 22: 5005 9h Segundo MS, Correa A. Adv. Synth. Catal. 2022; 364: 3161 9i Xiang H, Ye Y. ACS Catal. 2024; 14: 522 10a Segundo MS, Correa A. ChemSusChem 2018; 11: 3893 10b Peng H, Yu JT, Jiang Y, Yang H, Cheng J. J. Org. Chem. 2014; 79: 9847 10c Song Y, Zhang H, Guo J, Shao Y, Ding Y, Zhu L, Yao X. Eur. J. Org. Chem. 2021; 5914 10d Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. Org. Lett. 2022; 24: 7577 11a Wang J, Su Y, Quan Z, Li J, Yang J, Yuan Y, Huo C. Chem. Commun. 2021; 57: 1959 11b Yang L, Qiu Z, Wu J, Zhao J, Shen T, Huang X, Liu ZQ. Org. Lett. 2021; 23: 3207 11c Madala HB, Jang H, Han M, Kim SK, Sim J. Eur. J. Org. Chem. 2022; e202201259 12a Troyano FJ. A, Merkens K, Anwar K, Gómez-Suárez A. Angew. Chem. Int. Ed. 2021; 60: 1098 12b Bellotti P, Huang HM, Faber T, Glorius F. Chem. Rev. 2023; 123: 4237 12c Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JC. K, Gaunt MJ. Chem. Rev. 2022; 122: 1752 12d Treacy SM, Rovis T. Synthesis 2023; in press 12e Luo X, Feng Q, Wang P. Synthesis 2022; 54: 2696 13a Shen GB, Xie L, Wang YX, Gong TY, Wang BY, Hu YH, Fu YH, Yan M. ACS Omega 2021; 6: 23621 13b Ye S, Wu J. Acta Chim. Sin. 2019; 77: 814 13c Song ZY, Zhang CL, Ye S. Org. Biomol. Chem. 2019; 17: 181 13d Wang PZ, Chen JR, Xiao WJ. Org. Biomol. Chem. 2019; 17: 6936 13e Shen GB, Xie L, Yu HY, Liu J, Fu YH, Yan M. RSC Adv. 2020; 10: 31425 13f Huang W, Cheng X. Synlett 2017; 28: 148 14 Cardinale L, Schmotz MO. W. S, Konev MO, von Wangelin AJ. Org. Lett. 2022; 24: 506 15 Xue H, Guo M, Wang C, Shen Y, Qi R, Wu Y, Xu Z, Chang M. Org. Chem. Front. 2020; 7: 2426 16 Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057 Zusatzmaterial Zusatzmaterial Supporting Information