Synthesis 2024; 56(15): 2339-2346 DOI: 10.1055/a-2284-9845
Photoredox-Catalyzed Oxidative C–H Alkylation of Glycine Derivatives with 4-Alkyl-1,4-dihydropyridines
Madala Hari Babu‡
a
College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
,
Eunbin Jang‡
b
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
,
Hyesu Jang
b
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
,
Sang Kyum Kim
b
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
,
a
College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
c
Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
d
Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul 02447, Republic of Korea
› Author Affiliations This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1C1C1010044) and a grant from the National Institute of Food and Drug Safety Evaluation in 2023 (21153MFDS601).
Abstract
Oxidative α-C(sp3 )–H alkylation of N -arylated glycine derivatives with 4-alkyldihydropyridine derivatives (alkyl-DHPs) as versatile alkyl radical precursors has been developed. Utilizing visible-light-driven photoredox catalysis and ammonium persulfate as an oxidizing agent, this methodology facilitates the site-selective alkylation of glycine derivatives, enabling the site-selective alkylation of peptides. The reaction exhibits broad substrate scope, including various alkyl radicals and acid-labile functional groups. This approach expands the synthetic toolbox in peptide chemistry, offering a mild and efficient method for the synthesis of modified peptides.
Key words
unnatural amino acids -
photocatalysis -
4-alkyl-1,4-dihydropyridines -
persulfate -
peptides
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2284-9845.
Supporting Information
Publication History
Received: 14 February 2024
Accepted after revision: 11 March 2024
Accepted Manuscript online: 11 March 2024
Article published online: 02 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Gray BP,
Brown KC.
Chem. Rev. 2014; 114: 1020
1b
Lau JL,
Dunn MK.
Bioorg. Med. Chem. 2018; 26: 2700
2a
Zorzi A,
Deyle K,
Heinis C.
Curr. Opin. Chem. Biol. 2017; 38: 24
2b
Fosgerau K,
Hoffmann T.
Drug Discovery Today 2015; 20: 122
2c
Henninot A,
Collins JC,
Nuss JM.
J. Med. Chem. 2018; 61: 1382
3a
Vinogradov AA,
Yin Y,
Suga H.
J. Am. Chem. Soc. 2019; 141: 4167
3b
Otvos L,
Wade JD.
Front. Chem. 2014; 2: 8
4a
Walsh CT,
Garneau-Tsodikova S,
Gatto GJ.
Angew. Chem. Int. Ed. 2005; 44: 7342
4b
Zhang C,
Vinogradova EV,
Spokoyny AM,
Buchwald SL,
Pentelute BL.
Angew. Chem. Int. Ed. 2019; 58: 4810
4c
Salwiczek M,
Nyakatura EK,
Gerling UI. M,
Ye S,
Koksch B.
Chem. Soc. Rev. 2012; 41: 2135
4d
Guillen Schlippe YV,
Hartman MC. T,
Josephson K,
Szostak JW.
J. Am. Chem. Soc. 2012; 134: 10469
4e
Krall N,
da Cruz FP,
Boutureira O,
Bernardes GJ. L.
Nat. Chem. 2016; 8: 103
4f
Adhikari A,
Bhattarai BR,
Aryal A,
Thapa N,
Kc P,
Adhikari A,
Maharjan S,
Chanda PB,
Regmi BP,
Parajuli N.
RSC Adv. 2021; 11: 38126
5a
Sletten EM,
Bertozzi CR.
Angew. Chem. Int. Ed. 2009; 48: 6974
5b
DeGruyter JN,
Malins LR,
Baran PS.
Biochemistry 2017; 56: 3863
6a
Song Y,
Zhang Z,
Cao Y,
Yu Z.
ChemBioChem 2023; 24: e202200497
6b
Inokuma T.
Chem. Pharm. Bull. 2021; 69: 303
6c
Tailhades J.
Int. J. Pept. Res. Ther. 2022; 28: 1
6d
Yuan Z,
Liu X,
Liu C,
Zhang Y,
Rao Y.
Molecules 2020; 25: 5270
6e
Boto A,
González CC,
Hernández D,
Romero-Estudillo I,
Saavedra CJ.
Org. Chem. Front. 2021; 8: 6720
6f
Kordbacheh S,
Kasko AM.
Polym. Int. 2021; 70: 889
6g
Roche SP.
Synthesis 2021; 53: 2767
7a
Chalker JM,
Bernardes GJ. L,
Lin YA,
Davis BG.
Chem. Asian J. 2009; 4: 630
7b
Gunnoo SB,
Madder A.
ChemBioChem 2016; 17: 529
7c
Vara BA,
Li X,
Berritt S,
Walters CR,
Petersson EJ,
Molander GA.
Chem. Sci. 2018; 9: 336
7d
Dhanjee HH,
Saebi A,
Buslov I,
Loftis AR,
Buchwald SL,
Pentelute BL.
J. Am. Chem. Soc. 2020; 142: 9124
7e
Bondalapati S,
Jbara M,
Brik A.
Nat. Chem. 2016; 8: 407
7f
King TA,
Kandemir JM,
Walsh SJ,
Spring DR.
Chem. Soc. Rev. 2021; 50: 39
7g
Vantourout JC,
Adusumalli SR,
Knouse KW,
Flood DT,
Ramirez A,
Padial NM,
Istrate A,
Maziarz K,
Degruyter JN,
Merchant RR,
Qiao JX,
Schmidt MA,
Deery MJ,
Eastgate MD,
Dawson PE,
Bernardes GJ. L,
Baran PS.
J. Am. Chem. Soc. 2020; 142: 17236
7h
Yamada H,
Imoto T,
Fujita K,
Okazaki K,
Motomura M.
Biochemistry 1981; 20: 4836
7i
Rawale DG,
Thakur K,
Sreekumar P,
Sajeev TK,
Ramesh A,
Adusumalli SR,
Mishra RK,
Rai V.
Chem. Sci. 2021; 12: 6732
7j
Dardir AH,
Hazari N,
Miller SJ,
Shugrue CR.
Org. Lett. 2019; 21: 5762
7k
Meena R,
Shekhar S,
Ansari SB,
Tiwari A,
Lal J,
Reddy DN.
Chem. Asian J. 2023; 18: e202300638
7l
Watanabe S,
Wada Y,
Kawano M,
Higashibayashi S,
Sugai T,
Hanaya K.
Chem. Commun. 2023; 13026
7m
Tower SJ,
Hetcher WJ,
Myers TE,
Kuehl NJ,
Taylor MT.
J. Am. Chem. Soc. 2020; 142: 9112
7n
Seki Y,
Ishiyama T,
Sasaki D,
Abe J,
Sohma Y,
Oisaki K,
Kanai M.
J. Am. Chem. Soc. 2016; 138: 10798
7o
Lee JC,
Cuthbertson JD,
Mitchell NJ.
Org. Lett. 2023; 25: 5459
7p
Boutureira O,
Bernardes GJ. L.
Chem. Rev. 2015; 115: 2174
7q
Roch AL,
Hébert M,
Gagnon A.
Eur. J. Org. Chem. 2020; 5363
7r
Zhang S,
De Leon Rodriguez LM,
Li FF,
Brimble MA.
Chem. Sci. 2023; 14: 7782
8a
Zhao P,
Huang D,
Wang F,
Han T,
Yang M,
Wang KH,
Hu Y.
Appl. Organomet. Chem. 2022; 36: e6479
8b
Li S,
Yang X,
Wang Y,
Zhou H,
Zhang B,
Huang G,
Zhang Y,
Li Y.
Adv. Synth. Catal. 2018; 360: 4452
8c
Schörgenhumer J,
Chowdhury R,
Waser M.
Chem. Data Collect. 2017; 11–12: 36
8d
Wang GZ,
Liu DG,
Liu MT,
Fu Y.
Green Chem. 2021; 23: 5082
8e
Ke M,
Liu Z,
Huang G,
Huang G,
Wang J,
Tao Y,
Chen F.
Org. Lett. 2020; 22: 4135
8f
Wei XH,
Li ZH,
Zhao LB,
Zhang P,
Zhou HC,
Wang YB.
RSC Adv. 2019; 9: 32081
9a
Madala HB,
Sim J.
Eur. J. Org. Chem. 2022; e202200859
9b
Wang C,
Qi R,
Wang R,
Xu Z.
Acc. Chem. Res. 2023; 56: 2110
9c
Wei WT,
Song RJ,
Li JH.
Adv. Synth. Catal. 2014; 356: 1703
9d
Li K,
Wu Q,
Lan J,
You J.
Nat. Commun. 2015; 6: 8404
9e
Segundo MS,
Guerrero I,
Correa A.
Org. Lett. 2017; 19: 5288
9f
Yang X,
Xie Z,
Li Y,
Zhang Y.
Chem. Sci. 2020; 11: 4741
9g
Tian H,
Xu W,
Liu Y,
Wang Q.
Org. Lett. 2020; 22: 5005
9h
Segundo MS,
Correa A.
Adv. Synth. Catal. 2022; 364: 3161
9i
Xiang H,
Ye Y.
ACS Catal. 2024; 14: 522
10a
Segundo MS,
Correa A.
ChemSusChem 2018; 11: 3893
10b
Peng H,
Yu JT,
Jiang Y,
Yang H,
Cheng J.
J. Org. Chem. 2014; 79: 9847
10c
Song Y,
Zhang H,
Guo J,
Shao Y,
Ding Y,
Zhu L,
Yao X.
Eur. J. Org. Chem. 2021; 5914
10d
Wang J,
Ye Y,
Sang T,
Zhou C,
Bao X,
Yuan Y,
Huo C.
Org. Lett. 2022; 24: 7577
11a
Wang J,
Su Y,
Quan Z,
Li J,
Yang J,
Yuan Y,
Huo C.
Chem. Commun. 2021; 57: 1959
11b
Yang L,
Qiu Z,
Wu J,
Zhao J,
Shen T,
Huang X,
Liu ZQ.
Org. Lett. 2021; 23: 3207
11c
Madala HB,
Jang H,
Han M,
Kim SK,
Sim J.
Eur. J. Org. Chem. 2022; e202201259
12a
Troyano FJ. A,
Merkens K,
Anwar K,
Gómez-Suárez A.
Angew. Chem. Int. Ed. 2021; 60: 1098
12b
Bellotti P,
Huang HM,
Faber T,
Glorius F.
Chem. Rev. 2023; 123: 4237
12c
Lechner VM,
Nappi M,
Deneny PJ,
Folliet S,
Chu JC. K,
Gaunt MJ.
Chem. Rev. 2022; 122: 1752
12d
Treacy SM,
Rovis T.
Synthesis 2023; in press
12e
Luo X,
Feng Q,
Wang P.
Synthesis 2022; 54: 2696
13a
Shen GB,
Xie L,
Wang YX,
Gong TY,
Wang BY,
Hu YH,
Fu YH,
Yan M.
ACS Omega 2021; 6: 23621
13b
Ye S,
Wu J.
Acta Chim. Sin. 2019; 77: 814
13c
Song ZY,
Zhang CL,
Ye S.
Org. Biomol. Chem. 2019; 17: 181
13d
Wang PZ,
Chen JR,
Xiao WJ.
Org. Biomol. Chem. 2019; 17: 6936
13e
Shen GB,
Xie L,
Yu HY,
Liu J,
Fu YH,
Yan M.
RSC Adv. 2020; 10: 31425
13f
Huang W,
Cheng X.
Synlett 2017; 28: 148
14
Cardinale L,
Schmotz MO. W. S,
Konev MO,
von Wangelin AJ.
Org. Lett. 2022; 24: 506
15
Xue H,
Guo M,
Wang C,
Shen Y,
Qi R,
Wu Y,
Xu Z,
Chang M.
Org. Chem. Front. 2020; 7: 2426
16
Garza-Sanchez RA,
Tlahuext-Aca A,
Tavakoli G,
Glorius F.
ACS Catal. 2017; 7: 4057