CC BY 4.0 · Synlett
DOI: 10.1055/a-2285-0007
letter

Compatibility Assessment of Unactivated Internal Alkynes in ­Rhodium-Catalyzed [2+2+2] Cycloadditions

John M. Halford-McGuff
,
Aidan P. McKay
,
J.M.H.-M. thanks the EaSI-CAT Centre for Doctoral Training for a PhD Studentship. A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship (RF-2022-014) and the EPSRC Programme Grant ‘Boron: Beyond the Reagent’ (EP/W0077517/1) for support.


Abstract

Functionalized 1,2,4,5-tetrasubstituted benzenes are synthetically difficult or laborious to access. The Rh-catalyzed [2+2+2] cycloaddition of a diyne and internal alkyne offers a seemingly straightforward route to these scaffolds; however, this has been largely restricted to alkynes bearing activating (coordinating) functional groups, with very few examples of unactivated alkynes. In this work, we disclose an assessment of Rh-catalyzed [2+2+2] cycloadditions employing unactivated internal alkynes, focusing on the structural diversity and compatibility of both alkyne and diyne components. The limitations of this method are disclosed, with exceptionally bulky alkynes and specific functional groups undergoing side reactions. Furthermore, the practicalities of gram-scale reactions and catalyst recovery/reuse are demonstrated.

Supporting Information



Publication History

Received: 13 February 2024

Accepted after revision: 11 March 2024

Accepted Manuscript online:
11 March 2024

Article published online:
28 March 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1984; 23: 539
  • 2 Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
  • 3 Gandon V, Aubert C, Malacria M. Chem. Commun. 2006; 2209
  • 4 Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
  • 5 Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. Cotrimerizations of Acetylenic Compounds . In Organic Reactions, Vol. 68 . RajanBabu TV. Wiley; Hoboken: 2007: 1-302
  • 6 Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
  • 7 Shibata Y, Tanaka K. Synthesis 2012; 44: 323
  • 8 Transition-Metal-Mediated Aromatic Ring Construction. Tanaka K. Wiley; Hoboken: 2013: 3-298
  • 9 Kotha S, Lahiri K, Sreevani G. Synlett 2018; 29: 2342
  • 10 Matton P, Huvelle S, Haddad M, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2022; 54: 4
  • 11 Galan BR, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
  • 12 Berthelot M. C. R. Hebd. Séances Acad. Sci. 1890; 111: 471
  • 13 Reppe W, Schlichting O, Klager K, Toepel T. Justus Liebigs Ann. Chem. 1948; 560: 1
  • 14 Roglans A, Pla-Quintana A, Solà M. Chem. Rev. 2021; 121: 1894
  • 15 Parera M, Dachs A, Solà M, Pla-Quintana A, Roglans A. Chem. Eur. J. 2012; 18: 13097
  • 16 Dachs A, Osuna S, Roglans A, Solà M. Organometallics 2010; 29: 562
  • 17 Halford-McGuff JM, Slawin AM. Z, Watson AJ. B. ACS Catal. 2023; 13: 3463
    • 18a Halford-McGuff JM, Cordes DB, Watson AJ. B. Chem. Commun. 2023; 59: 7759
    • 18b Halford-McGuff JM, Varga M, Cordes DB, McKay AP, Watson AJ. B. ACS Catal. 2024;  14: 1846
  • 19 Varela JA, Saá C. Chem. Rev. 2023; 103: 3787

    • For recent reviews of transition-metal-catalyzed higher-order carbocyclization reactions, see:
    • 20a Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 20b Yu Z.-X, Wang Y, Wang Y. Chem. Asian J. 2010; 5: 1072
    • 20c Gulías M, López F, Mascareñas JL. Pure Appl. Chem. 2011; 83: 495
    • 20d Inglesby PA, Evans PA. In Comprehensive Organic Synthesis II, Vol. 5 . Knochel P, Molander GA, Fürstner A. Elsevier; Waltham: 2014: 656-702
    • 20e Kuila B, Kaur M, Singh P, Bhargava G. Eur. J. Org. Chem. 2018; 853
    • 20f Lam H, Lautens M. Synthesis 2020; 52: 2427
    • 20g Trost BM, Zuo Z, Schultz JE. Chem. Eur. J. 2020; 26: 15354
    • 20h Caillé J, Robiette R. Org. Biomol. Chem. 2021; 19: 5702
    • 21a Fristrup P, Kreis M, Palmelund A, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 21b Furusawa T, Tanimoto H, Nishiyama Y, Morimoto T, Kakiuchi K. Chem. Lett. 2007; 46: 926
    • 21c Bie F, Liu X, Shi Y, Cao H, Han Y, Szotak M, Liu C. J. Org. Chem. 2020; 85: 15676
    • 21d Qi X, Zhou R, Ai H.-J, Wu X.-F. J. Catal. 2020; 381: 215
    • 21e Davidson RT, Kuker EL, Dong VM. Acc. Chem. Res. 2021; 54: 1236

      For further information regarding recovery of rhodium catalysts:
    • 22a Dachs A, Torrent A, Pla-Quintana A, Roglans A, Jutand A. Organometallics 2009; 28: 6036
    • 22b Garcia L, Roglans A, Laurent R, Majoral J.-P, Pla-Quintana A, Caminade A.-M. Chem. Commun. 2012; 48: 9428
    • 22c Fernández M, Ferré M, Pla-Quintana A, Parella T, Pleixats R, Roglans A. Eur. J. Org. Chem. 2014; 6242
    • 22d Pla-Quintana A, Roglans A. Molecules 2022; 27: 1332
    • 23a Thiel I, Hostmann M, Jungk P, Keller S, Fischer F, Drexler H.-J, Heller D, Hapke M. Chem. Eur. J. 2017; 23: 17048
    • 23b Preetz A, Fischer C, Kohrt C, Drexler H.-J, Baumann W, Heller D. Organometallics 2011; 30: 5155
  • 24 The research data supporting this publication can be accessed at https://doi.org/ DOI: 10.17630/019f4d4d-d107-41d8-ad7f-3ddb244e1b3c.
  • 25 CCDC 23332665 (46a) and CCDC 2332666 (46b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 26 Representative Procedure for the Synthesis of 4An oven-dried microwave vial was charged with 2-(hex-1-yn-1-yl)thiophene (15.0 mg, 100 μmol, 1.0 equiv), [Rh(COD)(MeCN)2]BF4 (7.6 mg, 20.0 μmol, 20 mol%), and rac-BINAP (24.9 mg, 40.0 μmol, 40 mol%). The vial was sealed, evacuated, and backfilled with N2. Dry acetone (0.5 mL) was introduced into the vial, and the mixture was heated to 60 °C. A solution of 4-methyl-N,N-di(prop-2-yn-1-yl)benzenesulfonamide (148 mg, 600 μmol, 6.0 equiv) in acetone (0.5 mL) was prepared and this was added via syringe pump to the heated Rh solution over 15 h. The mixture was allowed to stir at 60 °C for the duration of the slow addition followed by a further 1 h (16 h, total reaction time). The vial was then allowed to cool to RT, before filtering through Celite® (washing with acetone) and concentrating in vacuo to give a residue that was purified by flash column chromatography (silica, 0–5% Et2O in PhMe) to yield the desired product 4 as a yellow solid (37.9 mg, 92%). 1H NMR (400 MHz, CDCl3): δ 7.81–7.76 (m, 2 H), 7.35–7.30 (m, 3 H), 7.14 (s, 1 H), 7.08 (s, 1 H), 7.06 (dd, J = 5.14, 3.50 Hz, 1 H), 6.94 (dd, J = 3.51, 1.20 Hz, 1 H), 4.62 (s, 2 H), 4.60 (s, 2 H), 2.68–2.60 (m, 2 H), 2.41 (s, 3 H), 1.51–1.38 (m, 2 H), 1.33–1.19 (m, 2 H), 0.83 (t, J = 7.31 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.8, 143.8, 142.3, 141.6, 136.2, 133.8, 133.8, 130.0, 127.8, 127.1, 126.7, 125.5, 125.2, 123.7, 53.7, 53.9, 34.0, 33.3, 22.6, 21.6, 14.0. IR (ATR, film): 2924, 1344, 1161, 1098, 1061, 810, 702, 665, 615, 550 cm–1. HRMS (ESI): m/z calcd for [C23H25NO2S2 + H]+: 412.1400; found: 412.1391.