Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(18): 2117-2122
DOI: 10.1055/a-2294-4029
DOI: 10.1055/a-2294-4029
letter
A Facile Procedure for Halodecarboxylation of Hydroxyaromatic Carboxylic Acids
This work was supported by the Key Scientific and Technological Project of Henan Province (Nos. 222102310117 and 222102320259) and by a Postdoctoral Research Grant of Henan Province (No. 19030076).
![](https://www.thieme-connect.de/media/synlett/202418/lookinside/thumbnails/st-2023-u0560-l_10-1055_a-2294-4029-1.jpg)
Abstract
An efficient approach is reported for the direct halodecarboxylation of hydroxyaromatic acids by using a readily available N-halosuccinimide (halo = Cl, Br) as the sole promoter in ethanol at room temperature without any other catalyst or additive. This environmentally friendly route tolerates a wide substrate scope with good to excellent yields under convenient conditions.
Key words
halogenation - decarboxylation - N-chlorosuccinimide - N-bromosuccinimide - hydroxyaromatic acids - trihalophenolsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2294-4029.
- Supporting Information
Publication History
Received: 03 January 2024
Accepted after revision: 25 March 2024
Accepted Manuscript online:
25 March 2024
Article published online:
23 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yin XJ, Xu GH, Sun X, Peng Y, Ji X, Jiang K, Li F. Molecules 2010; 15: 4261
- 1b Kan S, Chen Z, Shao L, Li J. J. Food Sci. 2014; 79: C499
- 1c Novaes LF. T, Pastre JC. Org. Lett. 2017; 19: 3163
- 1d Kim H, Kim SY, Sim GY, Ahn J.-H. J. Agric. Food Chem. 2020; 68: 9743
- 2a Nair PA, Ramesh P. J. Appl. Polym. Sci. 2011; 122: 1946
- 2b Wang D, Yuan Z, Liu Q, Chen P, Liu G. Chin. J. Chem. 2018; 36: 507
- 2c Jiang M, Yang H, Jin Y, Ou L, Fu H. Synlett 2018; 29: 1572
- 3a Watanabe A, Koyamada K, Miyamoto K, Kanazawa J, Uchiyama M. Org. Proc. Res. Dev. 2020; 24: 1328
- 3b Sharma R, Yadav MR. Org. Biomol. Chem. 2021; 19: 5476
- 4 Hesse O. Justus Liebigs Ann. Chem. 1861; 117: 297
- 5a Stenhouse J. J. Chem. Soc. 1875; 28: 7
- 5b Pope FG, Wood AS. J. Chem. Soc., Trans. 1912; 101: 1823
- 5c Francis AW, Hill AJ. J. Am. Chem. Soc. 1924; 46: 2498
- 5d Grovenstein EJr, Ropp GA. J. Am. Chem. Soc. 1956; 78: 2560
- 5e Kiehlmann E, Lauener RW. Can. J. Chem. 1989; 67: 335
- 5f Singh R, Just G. Synth. Commun. 1988; 18: 1327
- 5g Barton DH. R, Lacher B, Zard SZ. Tetrahedron Lett. 1985; 26: 5939
- 5h Camps P, Lukach AE, Pujol X, Vázquez S. Tetrahedron 2000; 56: 2703
- 6a Oldham JW. H. J. Chem. Soc. 1950; 100
- 6b Barnes RA, Prochaska RJ. J. Am. Chem. Soc. 1950; 72: 3188
- 6c Cristol S, Firth WJr. J. Org. Chem. 1961; 26: 280
- 6d Davis JA, Herynk J, Carroll S, Bunds J, Johnson D. J. Org. Chem. 1965; 30: 415
- 6e Bunce NJ. J. Org. Chem. 1972; 37: 664
- 7a Johnson RG, Ingham RK. Chem. Rev. 1956; 56: 219
- 7b Varenikov A, Shapiro E, Gandelman M. Chem. Rev. 2021; 121: 412
- 8 Luo Y, Pan X, Wu J. Tetrahedron Lett. 2010; 51: 6646
- 9 Peng X, Shao X.-F, Liu Z.-Q. Tetrahedron Lett. 2013; 54: 3079
- 10 Fu Z, Jiang L, Zuo Q, Li Z, Liu Y, Wei Z, Cai H. Org. Biomol. Chem. 2018; 16: 5416
- 11 Quibell JM, Perry GJ. P, Cannas DM, Larrosa I. Chem. Sci. 2018; 9: 3860
- 12 Zhang Z, Sun Q, Xu D, Xia C, Sun W. Green Chem. 2016; 18: 5485
- 13 Buncet NJ, Murray NG. Tetrahedron 1971; 27: 5323
- 14 Xu Y, Huang P, Jiang Y, Lv C, Li P, Wang J, Sun B, Jin C. Green Chem. 2023; 25: 8741
- 15 Decarboxylative Halogenation of Hydroxybenzoic Acids; General Procedure The appropriate hydroxyaromatic carboxylic acid 1 (0.2 mmol) and NXS (0.66 mmol) were stirred in 95% EtOH (2 mL) at r.t. for 24 h. The mixture was then concentrated in vacuum, and the crude product was purified by flash column chromatography [silica gel; PE–EtOAc (50:1)]. 2,4,6-Tribromophenol (3a) 16 White solid; yield: 60.9 mg (91%) from 1a; 56.2 mg (85%) from 1b; and 63.4 mg (96%) from 8; mp 92–94 °C; (Lit.16 95 °C). 1H NMR (400 MHz, CDCl3): δ = 7.58 (s, 2 H), 5.88 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 149.0, 134.3, 112.8, 110.5.
- 16 Kakinami T, Suenaga H, Yamaguchi T, Okamoto T, Kajigaeshi S. Bull. Chem. Soc. Jpn. 1989; 62: 3373