Subscribe to RSS
DOI: 10.1055/a-2301-9223
Brønsted Acid Catalyzed Intramolecular Allylic Substitution Reaction of Allylic Alcohols: A Facile Synthesis of 2-Vinylchromans
We thank the National Natural Science Foundation of China (No. 22071143, 22171178, 21971159) and the Innovation Program of the Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00008) for financial support.
Abstract
Brønsted acid catalyzed intramolecular allylic substitution reaction of secondary and tertiary allylic alcohols has been developed. A variety of 2-vinylchromans were efficiently prepared in moderate to excellent yields. The given method features wide substrate scope, operational simplicity, and mild, metal-free reaction conditions. The practicability of the method was demonstrated by a gram-scale reaction and further derivations of the product. Preliminarily studies on a catalytic asymmetric reaction were also undertaken.
Key words
Brønsted acid - allylic substitution reaction - allylic alcohol - chroman - metal-free reactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2301-9223.
- Supporting Information
Publication History
Received: 20 March 2024
Accepted after revision: 08 April 2024
Accepted Manuscript online:
08 April 2024
Article published online:
25 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Middleton E, Kandaswami C, Theoharides TC. Pharmacol. Rev. 2000; 52: 673
- 1b Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Med. Res. Rev. 2003; 23: 519
- 1c Schneider C. Mol. Nutr. Food Res. 2005; 49: 7
- 2a Shen HC. Tetrahedron 2009; 65: 3931
- 2b Dalpozzo R, Mancuso R. Symmetry 2019; 11: 1510 For selected examples, see
- 2c Youn SW, Eom JI. J. Org. Chem. 2006; 71: 6705
- 2d Adrio LA, Hii KK. Chem. Commun. 2008; 2325
- 2e Yamamoto Y, Itonaga K. Org. Lett. 2009; 11: 717
- 2f Yang Q, Wang Y, Luo S, Wang J. Angew. Chem. Int. Ed. 2019; 58: 5343
- 2g Watile RA, Bunrit A, Margalef J, Akkarasamiyo S, Ayub R, Lagerspets E, Biswas S, Repo T, Samec JS. M. Nat. Commun. 2019; 10: 3826
- 2h Tu M.-S, Liu S.-J, Zhong C, Zhang S, Zhang H, Zheng Y.-L, Shi F. J. Org. Chem. 2020; 85: 5403
- 2i Behera S, Bera N, Sarkar D. ChemstrySelect 2021; 6: 6193
- 2j Akkarasereenon K, Batsomboon P, Ruchirawat S, Ploypradith P. J. Org. Chem. 2022; 87: 15863
- 2k Li J, Xi W, Liu S, Yang Y, Yang J, Ding H, Wang Z. Chin. Chem. Lett. 2022; 33: 3007
- 2l Davis J, Gharaee M, Karunaratne CV, Cortes VazquezJ, Haynes M, Luo W, Nesterov VN, Cundari T, Wang H. Chem. Eur. J. 2022; 28: e202200224
- 2m Wang X, Hu N, Kong W, Song B, Li S. Eur. J. Med. Chem. 2022; 227: 113912
- 3a Kadota I, Yamamoto Y. Acc. Chem. Res. 2005; 38 (05) 423
- 3b Kundu S, Bishi S, Sarkar D. New J. Chem. 2022; 46: 12446 For selected examples, see
- 3c Welter C, Dahnz A, Brunner B, Streiff S, Dübon P, Helmchen G. Org. Lett. 2005; 7: 1239
- 3d Fukamizu K, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc. 2008; 130: 10498
- 3e Liu Q, Wen K, Zhang Z, Wu Z, Zhang YJ, Zhang W. Tetrahedron 2012; 68: 5209
- 3f Wang P.-S, Liu P, Zhai Y.-J, Lin H.-C, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 12732
- 3g Zhan M, Pu X, He B, Niu D, Zhang X. Org. Lett. 2018; 20: 5857
- 4 Larock RC, Berrios-Pena NG, Fried CA, Yum EK, Tu C, Leong W. J. Org. Chem. 1993; 58: 4509
- 5a Trost BM, Shen HC, Dong L, Surivet J.-P. J. Am. Chem. Soc. 2003; 125: 9276
- 5b Trost BM, Shen HC, Dong L, Surivet J.-P, Sylvain C. J. Am. Chem. Soc. 2004; 126: 11966
- 6 Ammann SE, Rice GT, White MC. J. Am. Chem. Soc. 2014; 136: 10834
- 7 Schafroth MA, Rummelt SM, Sarlah D, Carreira EM. Org. Lett. 2017; 19: 3235
- 8a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 8b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 8c Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
- 8d Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 8e Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 8f Ding C.-H, Hou X.-L. In Comprehensive Organic Synthesis, 2nd ed., Vol. 4. Molander GA, Knochel P. Elsevier; Oxford: 2014: 648-698
- 8g Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 8h Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 9a Lei C.-W, Mu B.-S, Zhou F, Yu J.-S, Zhou Y, Zhou J. Chem. Commun. 2021; 57: 9178 For selected examples, see
- 9b Qiao Z, Shafiq Z, Liu L, Yu Z.-B, Zheng Q.-Y, Wang D, Chen Y.-J. Angew. Chem. Int. Ed. 2010; 49: 7294
- 9c Chiarucci M, di Lillo M, Romaniello A, Cozzi PG, Cera G, Bandini M. Chem. Sci. 2012; 3: 2859
- 9d Suzuki Y, Seki T, Tanaka S, Kitamura M. J. Am. Chem. Soc. 2015; 137: 9539
- 9e Mo X, Hall DG. J. Am. Chem. Soc. 2016; 138: 10762
- 9f Li Z, Frings M, Yu H, Raabe G, Bolm C. Org. Lett. 2018; 20: 7367
- 10a Rueping M, Uria U, Lin M.-Y, Atodiresei I. J. Am. Chem. Soc. 2011; 133: 3732
- 10b Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2929
- 10c Wang P.-S, Zhou X.-L, Gong L.-Z. Org. Lett. 2014; 16: 976
- 10d Kazakova AN, Iakovenko RO, Boyarskaya IA, Nenajdenko VG, Vasilyev AV. J. Org. Chem. 2015; 80: 9506
- 10e Aota Y, Doko Y, Kano T, Maruoka K. Eur. J. Org. Chem. 2020; 1907
- 10f Zhang C.-H, Gao Q, Li M, Wang J.-F, Yu C.-M, Mao B. Org. Lett. 2021; 23: 3949
- 10g Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen W.-W, Ding K, Zhao B. J. Am. Chem. Soc. 2022; 144: 2853
- 10h Zou L.-M, Huang X.-Y, Zheng C, Cheng Y.-Z, You S.-L. Org. Lett. 2022; 24: 3544
- 10i Lv X, Gao P, Zhao X, Jiang Z. J. Org. Chem. 2023; 88: 9459
- 11a Yang C, Yang Z.-X, Ding C.-H, Xu B, Hou X.-L. Chem. Rec. 2021; 21: 1442
- 11b Du J, Li Y.-F, Ding C.-H. Chin. Chem. Lett. 2023; 34: 108401 For selected examples, see
- 11c Xu C.-F, Zheng B.-H, Suo J.-J, Ding C.-H, Hou X.-L. Angew. Chem. Int. Ed. 2015; 54: 1604
- 11d Yu F.-L, Bai D.-C, Liu Q.-R, Jiang Y.-J, Ding C.-H, Hou X.-L. ACS Catal. 2018; 8: 3317
- 11e Suo J.-J, Du J, Jiang Y.-J, Chen D, Ding C.-H, Hou X.-L. Chin. Chem. Lett. 2019; 30: 1512
- 11f Huang S, Tong F.-F, Bai D.-C, Zhang G.-P, Jiang Y.-J, Zhang B, Leng X, Guo Y.-L, Wan X.-L, Zhang X, Ding C.-H, Hou X.-L. Nat. Commun. 2021; 12: 6551
- 11g Wang J, Li Y.-F, Du J, Huang S, Ding C.-H, Wong HN. C, Hou X.-L. Org. Lett. 2022; 24: 1561
- 11h Huang S, Zhang G.-P, Jiang Y.-J, Yu F.-L, Ding C.-H, Hou X.-L. Chem. Commun. 2022; 58: 3513
- 12 Synthesis of Products 2; General ProcedureTo a flame-dried Schlenk tube with a magnetic stirring bar were charged compound 1 (0.3 mmol), anhydrous CH2Cl2 (3.0 mL), and Tf2NH (8.4 mg, 0.03 mmol) in sequence. The resulting mixture was stirred at 25 °C under an N2 atmosphere until full conversion as monitored by TLC. The reaction was quenched with water. The aqueous phase was extracted with CH2Cl2 (3 × 5 mL) and the combined organic phases were dried over anhydrous Na2SO4. After filtration through a thin pad of Celite, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc, 20:1 v/v) to afford 2.8-Fluoro-2-vinylchromane (2b): Yield: 30.4 mg (57%); yellow oil. 1H NMR (400 MHz, CDCl3): δ = 6.95–6.87 (m, 1 H), 6.86–6.78 (m, 1 H), 6.76–6.72 (m, 1 H), 6.00 (ddd, J = 17.5, 10.6, 5.5 Hz, 1 H), 5.40 (d, J = 17.3 Hz, 1 H), 5.26 (d, J = 10.6 Hz, 1 H), 4.66–4.62 (m, 1 H), 2.88–2.73 (m, 2 H), 2.13–2.07 (m, 1 H), 1.92–1.80 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 151.7 (d, J = 244.6 Hz), 142.8 (d, J = 10.8 Hz), 136.9, 124.5, 124.4, 119.5 (d, J = 7.3 Hz), 116.8, 113.8 (d, J = 18.1 Hz), 76.4, 27.1, 23.8 (d, J = 2.6 Hz). 19F NMR (376 MHz, CDCl3): δ = –137.1 (m, Ar-F). IR (KBr): 2927, 2851, 1506, 1420, 1301, 1251, 1121, 1044, 926, 853, 797 cm–1. HRMS (EI): m/z [M]+ calcd for C11H11FO: 178.0788; found: 178.0786.7-Methyl-2-vinylchromane (2c): Yield: 39.2 mg (75%); yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.00–6.91 (m, 1 H), 6.77–6.62 (m, 2 H), 6.00 (ddd, J = 17.3, 10.6, 5.6 Hz, 1 H), 5.40 (d, J = 17.3 Hz, 1 H), 5.25 (d, J = 10.6 Hz, 1 H), 4.58–4.52 (m, 1 H), 2.92–2.68 (m, 2 H), 2.30 (s, 3 H), 2.10–2.04 (m, 1 H), 1.90–1.79 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 154.4, 137.8, 137.3, 129.4, 121.2, 118.8, 117.3, 116.3, 76.2, 27.7, 23.9, 21.2. IR (KBr): 2927, 2851, 1572, 1506, 1420, 1301, 1251, 1121, 1044, 997, 926, 799 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C12H15O: 175.1117; found: 175.1120.7-Chloro-2-vinylchromane (2d): Yield: 47.6 mg (81%); yellow oil. 1H NMR (400 MHz, CDCl3): δ = 6.95 (d, J = 8.2 Hz, 1 H), 6.87 (d, J = 2.1 Hz, 1 H), 6.81 (dd, J = 8.1, 2.1 Hz, 1 H), 5.96 (ddd, J = 17.3, 10.6, 5.5 Hz, 1 H), 5.37 (d, J = 17.3 Hz, 1 H), 5.24 (d, J = 10.6 Hz, 1 H), 4.58–4.53 (m, 1 H), 2.86–2.68 (m, 2 H), 2.10–2.03 (m, 1 H), 1.91–1.77 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 155.2, 137.2, 132.3, 130.4, 120.43, 120.42, 117.1, 116.6, 76.3, 27.2, 23.7. IR (KBr): 2932, 1573, 1483, 1415, 1295, 1224, 1116, 1074, 1040, 993, 918, 854, 796 cm–1. HRMS (EI): m/z [M]+ calcd for C11H11ClO: 194.0493; found: 194.0496.6-(tert-Butyl)-2-vinylchromane (2f): Yield: 51.3 mg (79%); yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.17–7.13 (m, 1 H), 7.07–7.05 (m, 1 H), 6.82 (d, J = 8.5 Hz, 1 H), 6.01 (ddd, J = 17.3, 10.6, 5.7 Hz, 1 H), 5.40 (d, J = 17.2 Hz, 1 H), 5.25 (d, J = 10.5 Hz, 1 H), 4.57–4.51 (m, 1 H), 2.92–2.66 (m, 2 H), 2.11–2.04 (m, 1 H), 1.91–1.81 (m, 1 H), 1.31 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 152.3, 142.9, 137.9, 126.3, 124.5, 120.9, 116.4, 116.3, 76.3, 34.1, 31.7, 27.8, 24.6. IR (KBr): 2956, 2863, 1498, 1297, 1238, 1129, 991, 923, 819 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C15H21O: 217.1587: found: 217.1582.5-Chloro-2-vinylchromane (2k): Yield: 48.2 mg (83%); yellow oil. 1H NMR (600 MHz, CDCl3): δ = 7.03 (t, J = 8.1 Hz, 1 H), 6.93 (d, J = 7.9 Hz, 1 H), 6.78 (d, J = 8.4 Hz, 1 H), 5.97 (ddd, J = 16.8, 10.6, 5.6 Hz, 1 H), 5.37 (d, J = 17.2 Hz, 1 H), 5.25 (d, J = 10.7 Hz, 1 H), 4.55–4.45 (m, 1 H), 2.90–2.83 (m, 1 H), 2.80–2.72 (m, 1 H), 2.14–2.08 (m, 1 H), 1.87–1.80 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 155.7, 137.1, 134.6, 127.6, 121.0, 120.7, 116.7, 115.6, 76.0, 27.2, 22.6. IR (KBr): 2939, 1570, 1456, 1291, 1249, 1186, 1042, 996, 902, 774 cm–1. HRMS (EI): m/z [M]+ calcd for C11H11ClO: 194.0493; found: 194.0494.2-Vinyl-3,4-dihydro-2H-benzo[g]chromene (2l): Yield: 47.9 mg (76%); white solid; mp 55.0–57.0 °C. 1H NMR (400 MHz, CDCl3): δ = 7.71–7.64 (m, 2 H), 7.54 (s, 1 H), 7.38–7.32 (m, 1 H), 7.30–7.23 (m, 2 H), 6.03 (ddd, J = 17.3, 10.6, 5.5 Hz, 1 H), 5.43 (d, J = 17.3 Hz 1 H), 5.27 (d, J = 10.5 Hz, 1 H), 4.71–4.63 (m, 1 H), 3.13–2.96 (m, 2 H), 2.22–2.11 (m, 1 H), 1.99–1.87 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 153.2, 137.7, 133.7, 128.8, 128.0, 127.1, 126.5, 125.7, 124.1, 123.5, 116.5, 111.4, 76.6, 27.7, 24.9. IR (KBr): 2928, 2850, 1504, 1456, 1431, 1251, 1160, 1113, 985, 914, 870, 746 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C15H15O: 211.1117; found: 211.1116.
- 13 Chu W.-D, Liang T.-T, Ni H, Dong Z.-H, Shao Z, Liu Y, He C.-Y, Bai R, Liu Q.-Z. Org. Lett. 2022; 24: 4865
- 14a Akiyama T. Chem. Rev. 2007; 107: 5744
- 14b Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
- 14c Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761
- 14d Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 14e Li S, Xiang S.-H, Tan B. Chin. J. Chem. 2020; 38: 213
For reviews, see:
For reviews, see:
For selected reviews, see:
For a review, see:
For reviews, see: