Diabetologie und Stoffwechsel 2024; 19(S 02): S251-S269
DOI: 10.1055/a-2312-0040
DDG-Praxisempfehlung

Empfehlungen zur Ernährung von Personen mit Typ-2-Diabetes mellitus

Thomas Skurk
1   ZIEL-Institute for Food & Health, Technische Universität München, Freising, Deutschland
,
Anja Bosy-Westphal
2   Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Arthur Grünerbel
3   Diabeteszentrum München Süd, München, Deutschland
,
Stefan Kabisch
4   Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Potsdam, Deutschland
5   Deutsches Zentrum für Diabetesforschung (DZD), München, Deutschland
,
Winfried Keuthage
6   Schwerpunktpraxis für Diabetes und Ernährungsmedizin, Münster, Deutschland
,
Peter Kronsbein
7   Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach, Mönchengladbach, Deutschland
,
Karsten Müssig
8   Klinik für Innere Medizin, Gastroenterologie und Diabetologie, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg, Georgsmarienhütte, Deutschland
,
Helmut Nussbaumer
9   Diabetesakademie Südostbayern, Traunstein, Deutschland/HLW Health Academy, Braunau, Österreich
,
Andreas F. H. Pfeiffer
10   Abt. Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin, Deutschland
,
Marie-Christine Simon
11   Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Deutschland
,
Astrid Tombek
12   Diabetes-Klinik Bad Mergentheim, Bad Mergentheim, Deutschland
,
Katharina S. Weber
13   Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Diana Rubin
14   Vivantes Klinikum Spandau, Berlin, Deutschland
15   Vivantes Humboldt Klinikum, Berlin, Deutschland
,
für den Ausschuss Ernährung der DDG › Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren. Der Praktikabilität wegen handelt es sich bei den vorliegenden Ernährungsempfehlungen um eine gekürzte Version des Vorjahres. Es ist geplant eine wissenschaftlich kommentierte Version als S1-Leitlinie zu publizieren.

Inhaltliche neuerungen gegenüber der Vorjahresfassung

Neuerung 1: Für die mediterrane und vegetarische Ernährung konnten mit moderater Evidenz protektive Effekte auf zahlreiche kardiometabolische Parameter gezeigt werden

Begründung: Neue Auswertung

Ggf. stützende Quellenangabe: [97]



Publication History

Article published online:
21 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Beck J, Greenwood DA, Blanton L. et al. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes Care 2017; 40: 1409-1419
  • 2 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 3 Ausschuss Ernährung der Deutschen Diabetes Gesellschaft (DDG). Stellungnahme zu Evert AB. et al. Consensus Report: Nutrition Therapy for Adults with Diabetes or Prediabetes. Diabetes Care 2019; 42: 731-754 Accessed June 27, 2024 at: https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/stellungnahmedes-ausschuss-ernaehrung-derddg-zum-consensusreport-nutrition-the-rapy-for-adults-with-diabetesor-prediabetes
  • 4 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15: 318-368
  • 5 DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care 2013; 36 (Suppl. 02) S127-S138
  • 6 Lencioni C, Lupi R, Del Prato S. Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep 2008; 8: 179-184
  • 7 [Anonymous]. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes 1995; 44: 1249-1258
  • 8 Zaharia OP, Strassburger K, Strom A. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694
  • 9 Wing RR, Lang W, Wadden TA. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011; 34: 1481-1486
  • 10 Steven S, Hollingsworth KG, Al-Mrabeh A. et al. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016; 39: 808-815
  • 11 Jazet IM, Pijl H, Frölich M. et al. Factors predicting the blood glucose lowering effect of a 30-day very low calorie diet in obese Type 2 diabetic patients. Diabet Med 2005; 22: 52-55
  • 12 Lean MEJ, Leslie WS, Barnes AC. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, clusterrandomised trial. Lancet 2018; 391: 541-551
  • 13 Bangalore S, Fayyad R, DeMicco DA. et al. Body Weight Variability and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus. Circ Cardiovasc Qual Outcomes 2018; 11: e004724
  • 14 Yeboah P, Hsu FC, Bertoni AG. et al. Body Mass Index, Change in Weight, Body Weight Variability and Outcomes in Type 2 Diabetes Mellitus (from the ACCORD Trial). Am J Cardiol 2019; 123: 576-581
  • 15 Pagidipati NJ, Zheng Y, Green JB. et al. Association of obesity with cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: Insights from TECOS. Am Heart J 2020; 219: 47-57
  • 16 Bodegard J, Sundström J, Svennblad B. et al. Changes in body mass index following newly diagnosed type 2 diabetes and risk of cardiovascular mortality: a cohort study of 8486 primary-care patients. Diabetes Metab 2013; 39: 306-313
  • 17 Gregg EW, Chen H, Wagenknecht LE. et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 2012; 308: 2489-2496
  • 18 Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes Care 2013; 36 (Suppl. 02) S276-S281
  • 19 Colquitt JL, Pickett K, Loveman E. et al. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014; 8: CD003641
  • 20 Murgatroyd PR, Goldberg GR, Leahy FE. et al. Effects of inactivity and diet composition on human energy balance. Int J Obes Relat Metab Disord 1999; 23: 1269-1275
  • 21 Stubbs RJ, Sepp A, Hughes DA. et al. The effect of graded levels of exercise on energy intake and balance in free-living women. Int J Obes Relat Metab Disord 2002; 26: 866-869
  • 22 Granados K, Stephens BR, Malin SK. et al. Appetite regulation in response to sitting and energy imbalance. Appl Physiol Nutr Metab 2012; 37: 323-333
  • 23 Hägele FA, Büsing F, Nas A. et al. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different Levels of Energy Balance. J Clin Endocrinol Metab 2019; 104: 4481-4491
  • 24 Douglas JA, King JA, Clayton DJ. et al. Acute effects of exercise on appetite, ad libitum energy intake and appetite-regulatory hormones in lean and overweight/obese men and women. Int J Obes (Lond) 2017; 41: 1737-1744
  • 25 Savikj M, Zierath JR. Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia 2020; 63: 1491-1499
  • 26 Büsing F, Hägele FA, Nas A. et al. Impact of energy turnover on the regulation of glucose homeostasis in healthy subjects. Nutr Diabetes 2019; 9: 22
  • 27 Larsen JJ, Dela F, Kjaer M. et al. The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 1997; 40: 447-453
  • 28 Heden TD, Winn NC, Mari A. et al. Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes. J Appl Physiol (1985) 2015; 118: 624-634
  • 29 Reynolds AN, Mann JI, Williams S. et al. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia 2016; 59: 2572-2578
  • 30 Gaudet-Savard T, Ferland A, Broderick TL. et al. Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 2007; 14: 831-836
  • 31 DiPietro L, Gribok A, Stevens MS. et al. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes Care 2013; 36: 3262-3268
  • 32 Davies MJ, D’Alessio DA, Fradkin J. et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41: 2669-2701
  • 33 Schwingshackl L, Chaimani A, Hoffmann G. et al. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol 2018; 33: 157-170
  • 34 Schwingshackl L, Hoffmann G, Iqbal K. et al. Food groups and intermediate disease markers: a systematic review and network meta-analysis of randomized trials. Am J Clin Nutr 2018; 108: 576-586
  • 35 Neuenschwander M, Ballon A, Weber KS. et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019; 366: l2368
  • 36 Ge L, Sadeghirad B, Ball GDC. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 2020; 369: m696
  • 37 Schwingshackl L, Nitschke K, Zähringer J. et al. Impact of Meal Frequency on Anthropometric Outcomes: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11: 1108-1122
  • 38 Della Corte KW, Perrar I, Penczynski KJ. et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 2018; 10: 606
  • 39 Schwingshackl L, Chaimani A, Schwedhelm C. et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: A systematic review and network meta-analysis. Crit Rev Food Sci Nutr 2019; 59: 2674-2687
  • 40 Uusitupa M, Khan TA, Viguiliouk E. et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 2611
  • 41 de Souza RJ, Mente A, Maroleanu A. et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015; 351: h3978
  • 42 Astrup A, Magkos F, Bier DM. et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC Stateof-the-Art Review. J Am Coll Cardiol 2020; 76: 844-857
  • 43 Pimpin L, Wu JHY, Haskelberg H. et al. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS One 2016; 11: e0158118
  • 44 Benatar JR, Sidhu K, Stewart RAH. Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS One 2013; 8: e76480
  • 45 Wu JHY, Marklund M, Imamura F. et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol 2017; 5: 965-974
  • 46 Li J, Guasch-Ferré M, Li Y. et al. Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 112: 150-167
  • 47 an Pan A, Chen M, Chowdhury R. et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 96: 1262-1273
  • 48 Abdelhamid AS, Martin N, Bridges C. et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD012345
  • 49 Abdelhamid AS, Brown TJ, Brainard JS. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3: CD003177
  • 50 Brown TJ, Brainard J, Song F. et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ 2019; 366: l4697
  • 51 Qian F, Korat AA, Malik V. et al. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2016; 39: 1448-1457
  • 52 Jovanovski E, de Castro Ruiz Marques A, Li D. et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2019; 77: 19-31
  • 53 Zhang YY, Liu W, Zhao TY. et al. Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health Aging 2017; 21: 187-192
  • 54 Lin N, Shi JJ, Li YM. et al. What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis 2016; 15: 133
  • 55 Reis CEG, Landim KC, Nunes ACS. et al. Safety in the hypertriglyceridemia treatment with N-3 polyunsaturated fatty acids on glucose metabolism in subjects with type 2 diabetes mellitus. Nutr Hosp 2014; 31: 570-576
  • 56 Gao L, Cao J, Mao Q. et al. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis 2013; 226: 328-334
  • 57 He XX, Wu XL, Chen RP. et al. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11: e0162368
  • 58 Li N, Yue H, Jia M. et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct 2019; 10: 4557-4565
  • 59 Wanders AJ, Blom WAM, Zock PL. et al. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: a meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Res Care 2019; 7: e000585
  • 60 Abbott KA, Burrows TL, Thota RN. et al. Do ω-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2016; 104: 1470-1484
  • 61 Jovanovski E, Li D, Thanh Ho HV. et al. The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltimore) 2017; 96: e6531
  • 62 Faris MAI, Jahrami H, BaHammam A. et al. A systematic review, metaanalysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res Clin Pract 2020; 165: 108226
  • 63 Mirmiran P, Bahadoran Z, Gaeini Z. et al. Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29: 906-915
  • 64 Fernando HA, Zibellini J, Harris RA. et al. Effect of Ramadan Fasting on Weight and Body Composition in Healthy Non-Athlete Adults: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 478
  • 65 Horne BD, May HT, Anderson JL. et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. Am J Cardiol 2008; 102: 814-819
  • 66 Horne BD, Muhlestein JB, May HT. et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary artery disease in patients undergoing coronary angiography. Am J Cardiol 2012; 109: 1558-1562
  • 67 Schwingshackl L, Zähringer J, Nitschke K. et al. Impact of intermittent energy restriction on anthropometric outcomes and intermediate disease markers in patients with overweight and obesity: systematic review and meta-analyses. Crit Rev Food Sci Nutr 2021; 61: 1293-1304
  • 68 Park J, Seo YG, Paek YJ. et al. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metabolism 2020; 111: 154336
  • 69 Harris L, Hamilton S, Azevedo LB. et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep 2018; 16: 507-547
  • 70 Seimon RV, Roekenes JA, Zibellini J. et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418: 153-172
  • 71 Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr 2015; 102: 464-470
  • 72 Borgundvaag E, Mak J, Kramer CK. Metabolic Impact of Intermittent Fasting in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Interventional Studies. J Clin Endocrinol Metab 2021; 106: 902-911
  • 73 Parr EB, Devlin BL, Lim KHC. et al. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020; 12: 3228
  • 74 Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract 2016; 122: 106-112
  • 75 Carter S, Clifton PM, Keogh JB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res Clin Pract 2019; 151: 11-19
  • 76 Corley BT, Carroll RW, Hall RM. et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med 2018; 35: 588-594
  • 77 Templeman I, Smith HA, Chowdhury E. et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021; 13: eabd8034
  • 78 Henry RR, Wiest-Kent TA, Scheaffer L. et al. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes 1986; 35: 155-164
  • 79 Amatruda JM, Richeson JF, Welle SL. et al. The safety and efficacy of a controlled low-energy (“very-low-calorie”) diet in the treatment of noninsulin-dependent diabetes and obesity. Arch Intern Med 1988; 148: 873-877
  • 80 Rotella CM, Cresci B, Mannucci E. et al. Short cycles of very low calorie diet in the therapy of obese type II diabetes mellitus. J Endocrinol Invest 1994; 17: 171-179
  • 81 Dhindsa P, Scott AR, Donnelly R. Metabolic and cardiovascular effects of very-low-calorie diet therapy in obese patients with Type 2 diabetes in secondary failure: outcomes after 1 year. Diabet Med 2003; 20: 319-324
  • 82 American Diabetes Association. Standards of medical care in diabetes 2022. Clin Diabetes 2022; 40: 10-38
  • 83 Lean MEJ, Leslie WS, Barnes AC. et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 2019; 7: 344-355
  • 84 Holman RR, Paul SK, Bethel MA. et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589
  • 85 Haslacher H, Fallmann H, Waldhäusl C. et al. Type 2 diabetes care: Improvement by standardization at a diabetes rehabilitation clinic. An observational report. PLoS One 2019; 14: e0226132
  • 86 American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43: S48-S65
  • 87 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 2018; 35: 541-547
  • 88 Dworatzek PD, Arcudi K, Gougeon R. et al. Nutrition therapy. Can J Diabetes 2013; 37 (Suppl. 01) S45-S55
  • 89 Hallberg SJ, Dockter NE, Kushner JA. et al. Improving the scientific rigour of nutritional recommendations for adults with type 2 diabetes: A comprehensive review of the American Diabetes Association guidelinerecommended eating patterns. Diabetes Obes Metab 2019; 21: 1769-1779
  • 90 Salas-Salvadó J, Becerra-Tomás N, Papandreou C. et al. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management of Type 2 Diabetes: A Narrative Review. Adv Nutr 2019; 10: S320-S331
  • 91 Viguiliouk E, Kendall CW, Kahleová H. et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2019; 38: 1133-1145
  • 92 Papamichou D, Panagiotakos DB, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis 2019; 29: 531-543
  • 93 Szczerba E, Barbaresko J, Schiemann T. et al. Diet in the management of type 2 diabetes: umbrella review of systematic reviews with meta-analyses of randomised controlled trials. BMJ 2023; 2: e0006641
  • 94 Ohlsson B. An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin levels are elevated. Exp Ther Med 2019; 17: 2883-2893
  • 95 Daneshzad E, Emami S, Darooghegi Mofrad M. et al. Association of modified Nordic diet with cardiovascular risk factors among type 2 diabetes patients: a cross-sectional study. J Cardiovasc Thorac Res 2018; 10: 153-161
  • 96 Via MA, Mechanick JI. Nutrition in Type 2 Diabetes and the Metabolic Syndrome. Med Clin North Am 2016; 100: 1285-1302
  • 97 Mittendorfer B, Klein S, Fontana L. A word of caution against excessive protein intake. Nat Rev Endocrinol 2020; 16: 59-66
  • 98 Labonte CC, Chevalier S, Marliss EB. et al. Effect of 10% dietary protein intake on whole body protein kinetics in type 2 diabetic adults. Clin Nutr 2015; 34: 1115-1121
  • 99 Markova M, Hornemann S, Sucher S. et al. Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 2018; 108: 279-291
  • 100 Volkert D. Aktuelle ESPEN-Leitlinie Klinische Ernährung und Hydration in der Geriatrie. Dtsch Med Wochenschr 2020; 145: 1306-1314
  • 101 Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev 2020; 10: CD001892
  • 102 Ikizler TA, Burrowes JD, Byham-Gray LD. et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis 2020; 76: S1-S107
  • 103 Menon V, Kopple JD, Wang X. et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 2009; 53: 208-217
  • 104 Jiang Z, Tang Y, Yang L. et al. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol 2018; 50: 687-694
  • 105 Fiaccadori E, Sabatino A, Barazzoni R. et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40: 1644-1668
  • 106 Pfeiffer AFH, Pedersen E, Schwab U. et al. The Effects of Different Quantities and Qualities of Protein Intake in People with Diabetes Mellitus. Nutrients 2020; 12: 365
  • 107 Berry SE, Valdes AM, Drew DA. et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26: 964-973
  • 108 Livesey G, Taylor R, Livesey H. et al. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 97: 584-596
  • 109 Livesey G, Livesey H. Coronary Heart Disease and Dietary Carbohydrate, Glycemic Index, and Glycemic Load: Dose-Response Meta-analyses of Prospective Cohort Studies. Mayo Clin Proc Innov Qual Outcomes 2019; 3: 52-69
  • 110 Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr 2010; 104: 797-802
  • 111 Brand-Miller J, Hayne S, Petocz P. et al. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 2003; 26: 2261-2267
  • 112 Ojo O, Ojo OO, Adebowale F. et al. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018; 10: 373
  • 113 Franz MJ, MacLeod J, Evert A. et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J Acad Nutr Diet 2017; 117: 1659-1679
  • 114 Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018; 10: 1361
  • 115 Aune D, Norat T, Romundstad P. et al. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 2013; 28: 845-858
  • 116 InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015; 58: 1394-1408
  • 117 Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016; 109: 39-54
  • 118 Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 2020; 17: e1003053
  • 119 Da Silva Borges D, Fernandes R, Thives Mello A. et al. Prebiotics may reduce serum concentrations of C-reactive protein and ghrelin in overweight and obese adults: a systematic review and meta-analysis. Nutr Rev 2020; 78: 235-248
  • 120 Reynolds A, Mann J, Cummings J. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019; 393: 434-445
  • 121 Musa-Veloso K, Poon T, Harkness LS. et al. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 759-774
  • 122 Wang W, Li J, Chen X. et al. Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020; 20: 82
  • 123 Weickert MO, Roden M, Isken F. et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 2011; 94: 459-471
  • 124 Honsek C, Kabisch S, Kemper M. et al. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018; 61: 1295-1305
  • 125 Kabisch S, Meyer NMT, Honsek C. et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019; 11: 2385
  • 126 Hjorth MF, Ritz C, Blaak EE. et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. Am J Clin Nutr 2017; 106: 499-505
  • 127 Xiao Z, Chen H, Zhang Y. et al. The effect of psyllium consumption on weight, body mass index, lipid profile, and glucose metabolism in diabetic patients: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2020; 34: 1237-1247
  • 128 Wang L, Yang H, Huang H. et al. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and doseresponse meta-analysis of 33 randomized controlled trials. J Transl Med 2019; 17: 410
  • 129 Rao M, Gao C, Xu L. et al. Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. J Diabetes Res 2019; 2019: 5101423
  • 130 Pittler MH, Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med 2001; 110: 724-730
  • 131 Bahrmann A, Bahrmann P, Baumann J. et al. S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. 2. Auflage 2018 – AWMF-Register-Nr. 057-017. Diabetol Stoffwechs 2018; 13: 423-489
  • 132 Volkert D, Bauer J, Frühwald T. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGG Klinische Ernährung in der Geriatrie. Aktuelle Ernährungsmedizin 2013; 38: e1-e48
  • 133 Zeyfang A, Wernecke J, Bahrmann A. Diabetes mellitus im Alter. Diabetol Stoffwechs 2020; 15 (Suppl. 01) S112-S119
  • 134 Guigoz Y, Vellas B. Malnutrition in the elderly: the Mini Nutritional Assessment (MNA). Ther Umsch 1997; 54: 345-350
  • 135 Rubenstein LZ, Harker JO, Salvà A. et al. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366-M372
  • 136 Şat S, Aydınkoç-Tuzcu K, Berger F. et al. Diabetes und Migration. Diabetol Stoffwechs 2019; 14 (Suppl. 02) S306-S317
  • 137 Diker O, Deniz T, Çetinkaya A. History of Turkish Cuisine Culture and the Influence of the Balkans. IOSR Journal of Humanities And Social Science 2016; 10: 1-6
  • 138 Schmid B. Ernährung und Migration [Zugl.: München, Techn. Univ., Diss., 2003]. c. München: Utz, Wiss; 2003
  • 139 Magni P, Bier DM, Pecorelli S. et al. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv Nutr 2017; 8: 532-545
  • 140 Praxistool zur Ernährung. Orientierungshilfe für die Diabetesberatung nach geografischen Räumen. Accessed July 15, 2021 at: https://migration.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/05_Arbeitsgemeinschaften/AG_Migranten/Microsite/200417_Ernaehrungstoo_DDG-GB19-Einleger_04.pdf
  • 141 McGlynn ND, Khan TA, Wang L. et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5: e222092
  • 142 Chen H, Wang J, Li Z. et al. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int J Environ Res Public Health 2019; 16: 2192
  • 143 Asgari-Taee F, Zerafati-Shoae N, Dehghani M. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Nutr 2019; 58: 1759-1769
  • 144 Wu H, Flint AJ, Qi Q. et al. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med 2015; 175: 373-384
  • 145 Johnsen NF, Frederiksen K, Christensen J. et al. Whole-grain products and whole-grain types are associated with lower all-cause and causespecific mortality in the Scandinavian HELGA cohort. Br J Nutr 2015; 114: 608-623
  • 146 Wei H, Gao Z, Liang R. et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies – CORRIGENDUM. Br J Nutr 2016; 116: 952
  • 147 Chen GC, Tong X, Xu JY. et al. Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2016; 104: 164-172
  • 148 Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M. et al. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2016; 7: 1052-1065
  • 149 Zong G, Gao A, Hu FB. et al. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation 2016; 133: 2370-2380
  • 150 Aune D, Keum N, Giovannucci E. et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 2016; 353: i2716
  • 151 Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019; 10: S404-S421
  • 152 Zhang B, Zhao Q, Guo W. et al. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: a systematic review and dose-response meta-analysis from prospective cohort studies. Eur J Clin Nutr 2018; 72: 57-65
  • 153 Åberg S, Mann J, Neumann S. et al. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020; 43: 1717-1723
  • 154 Bechthold A. Vollwertig essen und trinken nach den 10 Regeln der DGE. Bonn: Deutsche Gesellschaft für Ernährung e. V. (DGE); 2018
  • 155 Miller V, Mente A, Dehghan M. et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet 2017; 390: 2037-2049
  • 156 Aune D, Giovannucci E, Boffetta P. et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46: 1029-1056
  • 157 Bechthold A, Boeing H, Schwedhelm C. et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019; 59: 1071-1090
  • 158 Zhan J, Liu YJ, Cai LB. et al. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2017; 57: 1650-1663
  • 159 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492
  • 160 Barnard ND, Cohen J, Jenkins DJA. et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care 2006; 29: 1777-1783
  • 161 Jenkins DJA, Kendall CWC, Augustin LSA. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 2012; 172: 1653-1660
  • 162 Renner B, Arens-Azevêdo U, Watzl B. et al. DGE-Positionspapier zur nachhaltigeren Ernährung. Ernährungsumschau 2021; 68: 144-154
  • 163 Jannasch F, Kröger J, Schulze MB. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J Nutr 2017; 147: 1174-1182
  • 164 Chen C, Yu X, Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS One 2015; 10: e0139565
  • 165 DGE – Deutsche Gesellschaft für Ernährung. Vollwertig essen und trinken nach den 10 Regeln der DGE. Accessed July 13, 2021 at: https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/10-regelnder-dge/
  • 166 Zeraatkar D, Han MA, Guyatt GH. et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 2019; 171: 703-710
  • 167 Vernooij RWM, Zeraatkar D, Han MA. et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 2019; 171: 732-741
  • 168 Davidson MH, Hunninghake D, Maki KC. et al. Comparison of the effects of lean red meat vs lean white meat on serum lipid levels among freeliving persons with hypercholesterolemia: a long-term, randomized clinical trial. Arch Intern Med 1999; 159: 1331-1338
  • 169 Hunninghake DB, Maki KC, Kwiterovich PO. et al. Incorporation of lean red meat into a National Cholesterol Education Program Step I diet: a long-term, randomized clinical trial in free-living persons with hypercholesterolemia. J Am Coll Nutr 2000; 19: 351-360
  • 170 Bergeron N, Chiu S, Williams PT. et al. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am J Clin Nutr 2019; 110: 24-33
  • 171 Charlton K, Walton K, Batterham M. et al. Pork and Chicken Meals Similarly Impact on Cognitive Function and Strength in Community-Living Older Adults: A Pilot Study. J Nutr Gerontol Geriatr 2016; 35: 124-145
  • 172 Murphy KJ, Parker B, Dyer KA. et al. A comparison of regular consumption of fresh lean pork, beef and chicken on body composition: a randomized cross-over trial. Nutrients 2014; 6: 682-696
  • 173 Murphy KJ, Thomson RL, Coates AM. et al. Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients 2012; 4: 711-723
  • 174 Costello RB, Dwyer JT, Saldanha L. et al. Do Cinnamon Supplements Have a Role in Glycemic Control in Type 2 Diabetes? A Narrative Review. J Acad Nutr Diet 2016; 116: 1794-1802
  • 175 Sierra-Puente D, Abadi-Alfie S, Arakanchi-Altaled K. et al. Cinammon (Cinnamomum Spp.) and Type 2 Diabetes Mellitus. CTNR 2019; 18: 247-255
  • 176 Barriocanal LA, Palacios M, Benitez G. et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol 2008; 51: 37-41
  • 177 Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care 2012; 35: 959-964
  • 178 Grotz VL, Henry RR, McGill JB. et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc 2003; 103: 1607-1612
  • 179 Maki KC, Curry LL, Reeves MS. et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem Toxicol 2008; 46 (Suppl. 07) S47-S53
  • 180 Olalde-Mendoza L, Moreno-González YE. Modificación de la glucemia en ayuno en adultos con diabetes mellitus tipo 2 después de la ingesta de refrescos de cola y de dieta en el estado de querétaro, México. Arch Latinoam Nutr 2013; 63: 142-147
  • 181 Temizkan S, Deyneli O, Yasar M. et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr 2015; 69: 162-166
  • 182 Ferrazzano GF, Cantile T, Alcidi B. et al. Is Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules 2015; 21: E38
  • 183 Prashant GM, Patil RB, Nagaraj T. et al. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract 2012; 13: 749-752
  • 184 EFSA 2013. EFSA schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist. Accessed September 01, 2020 at: https://www.efsa.europa.eu/de/press/news/131210
  • 185 Bock PM, Telo GH, Ramalho R. et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021; 64: 26-41
  • 186 Rittiphairoj T, Pongpirul K, Janchot K. et al. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12: 722-734
  • 187 Zheng M, Zhang R, Tian X. et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8: 908
  • 188 Wong A, Ngu DYS, Dan LA. et al. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 2015; 14: 95
  • 189 Salari A, Ghodrat S, Gheflati A. et al. Effect of kefir beverage consumption on glycemic control: A systematic review and meta-analysis of randomized controlled clinical trials. Complementary therapies in clinical practice 2021; 44: 101443
  • 190 Evert AB, Boucher JL, Cypress M. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014; 37 (Suppl. 01) S120-S143
  • 191 Sievenpiper JL, Chan CB, Dworatzek PD. et al. Nutrition Therapy. Can J Diabetes 2018; 42 (Suppl. 01) S64-S79
  • 192 Sievenpiper JL, de Souza RJ, Mirrahimi A. et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 2012; 156: 291-304
  • 193 Ha V, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 2012; 59: 787-795
  • 194 Chiavaroli L, de Souza RJ, Ha V. et al. Effect of Fructose on Established Lipid Targets: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. J Am Heart Assoc 2015; 4: e001700
  • 195 Wang X, Ouyang Y, Liu J. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014; 349: g4490
  • 196 Chiu S, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and metaanalysis of controlled feeding trials. Eur J Clin Nutr 2014; 68: 416-423
  • 197 Wang DD, Sievenpiper JL, de Souza RJ. et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 2012; 142: 916-923
  • 198 Cozma AI, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 2012; 35: 1611-1620
  • 199 Sievenpiper JL, Chiavaroli L, de Souza RJ. et al. “Catalytic” doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr 2012; 108: 418-423
  • 200 Sievenpiper JL, Carleton AJ, Chatha S. et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 2009; 32: 1930-1937
  • 201 Chung M, Ma J, Patel K. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 833-849
  • 202 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Diabetol Stoffwechs 2024; 19: S378-S394
  • 203 Ahmed AT, Karter AJ, Warton EM. et al. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen Intern Med 2008; 23: 275-282
  • 204 Bantle AE, Thomas W, Bantle JP. Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes mellitus. Metabolism 2008; 57: 241-245
  • 205 Avogaro A, Beltramello P, Gnudi L. et al. Alcohol intake impairs glucose counterregulation during acute insulin-induced hypoglycemia in IDDM patients. Evidence for a critical role of free fatty acids. Diabetes 1993; 42: 1626-1634
  • 206 Turner BC, Jenkins E, Kerr D. et al. The effect of evening alcohol consumption on next-morning glucose control in type 1 diabetes. Diabetes Care 2001; 24: 1888-1893
  • 207 Richardson T, Weiss M, Thomas P. et al. Day after the night before: influence of evening alcohol on risk of hypoglycemia in patients with type 1 diabetes. Diabetes Care 2005; 28: 1801-1802
  • 208 Pedersen-Bjergaard U, Reubsaet JLE, Nielsen SL. et al. Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated diabetes: analysis of 141 cases. Am J Med 2005; 118: 307-310
  • 209 Frier B, Fisher M. Hrsg. Moderators, monitoring and management of hypoglycaemia [101–120]. Chichester: John Wiley & Sons; 2007
  • 210 Drzikova B. Haferprodukte mit modifiziertem Gehalt an β-Glucanen und resistenter Stärke und ihre Effekte auf den Gastrointestinaltrakt unter In-vitro- und In-vivo-Bedingungen (2005). Accessed June 12, 2023 at: http://opus.kobv.de/ubp/volltexte/205/592/
  • 211 He L, Zhao J, Huang Y. et al. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials. Food Funct 2016; 7: 1413-1428