Diabetologie und Stoffwechsel 2024; 19(S 02): S279-S289
DOI: 10.1055/a-2312-0420
DDG-Praxisempfehlung

Diabetes, Sport und Bewegung

Katrin Esefeld
1   Präventive und Rehabilitative Sportmedizin, Technische Universität München, Klinikum rechts der Isar, München, Deutschland
2   Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Munich Heart Alliance (MHA), München, Deutschland
,
Stephan Kress
3   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
4   Medizinische Klinik Vinzentius-Krankenhaus Landau, Landau, Deutschland
,
Meinolf Behrens
5   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
6   Diabeteszentrum Minden, Minden, Deutschland
,
Peter Zimmer
7   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
,
Michael Stumvoll
8   Medizinische Klinik und Poliklinik III, Universitätsklinik Leipzig, Leipzig, Deutschland
,
Ulrike Thurm
9   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
,
Bernhard Gehr
10   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
11   m&i-Fachklinik Bad Heilbrunn, Bad Heilbrunn, Deutschland (Ringgold ID: RIN62559)
,
Martin Halle
12   Präventive und Rehabilitative Sportmedizin, Technische Universität München, Klinikum rechts der Isar, München, Deutschland
13   Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Munich Heart Alliance (MHA), München, Deutschland
14   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
,
Christian Brinkmann
15   AG Diabetes, Sport und Bewegung der DDG, Berlin, Deutschland
16   Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule Köln, Köln, Deutschland
17   IST Hochschule Düsseldorf, Düsseldorf, Deutschland
› Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.

Inhaltliche neuerungen gegenüber der Vorjahresfassung

Neuerung 1: Aktualisierung der Bewegungsempfehlungen für ein optimales Bewegungspensum gemäß den Empfehlungen der American Diabetes Association (ADA) für das Jahr 2024

Begründung: Empfehlungen der neu erschienenen Guidelines der ADA 2024 werden nun berücksichtigt.

Stützende Quellenangabe: [1]

Neuerung 2: Hinweis, dass Phasen des Menstruationszyklus für Überlegungen zur Anpassungen der Insulindosis/Zusatzkohlenhydrate im Zusammenhang mit Sport als ein weiterer Faktor berücksichtigt werden sollten.

Begründung: Studien deuten an, dass Glukosedynamiken in Abhängigkeit vom Menstruationszyklus im Kontext von Sport und Bewegung unterschiedlich sein können.

Stützende Quellenangabe: [2]

Neuerung 3: Hinweis auf die Möglichkeit des Einsatzes digitaler Gesundheitsanwendungen (DIGA) für Lebensstilmodifikationen

Begründung: DIGA auf Rezept können Menschen mit Diabetes bei Lebensstilveränderungen unterstützen, um klinische Werte zu verbessern. Für einige DIGA wurde bereits ein Wirksamkeitsnachweis erbracht.

Stützende Quellenangabe: [3]

Neuerung 4: Aktualisierung der Empfehlungen zum Elektromyostimulations (EMS)-Training für Menschen mit Diabetes mellitus

Begründung: Gemäß der Empfehlung eines überarbeiteten Consensus-Reports (aufgrund neuerer Studien zur Effektivität und Sicherheit von EMS-Training) gilt Diabetes mellitus nun nicht mehr als absolute, sondern relative Kontraindikation für ein EMS-Training im kommerziellen Setting.

Stützende Quellenangabe: [4]

Neuerung 5: Erläuterung zum Einsatz von „Exercise snacks“ (Bewegungseinheiten von kurzer Dauer)

Begründung: Einige Studien deuten an, dass der Einsatz sogenannter „Exercise snacks“, die sich gut in den Alltag integrieren lassen, nützlich sein könnte, um den gesundheitsschädlichen Wirkungen langer Inaktivitätsphasen entgegenzuwirken und das Glukoseprofil zu verbessern.

Stützende Quellenangabe: [5] [6]

Neuerung 6: Hinweis zum optimalen Timing von Sport und Bewegung bei Menschen mit Typ-2-Diabetes mellitus

Begründung: Eine aktuelle Metastudie zeigt, dass zur Reduktion postprandialer Glukosespitzen Sport und Bewegung zeitnah nach dem Essen sinnvoller sind als vor dem Essen.

Stützende Quellenangabe: [7]

Bewegung ist für alle Formen des Diabetes mellitus eine der wichtigsten Maßnahmen, die Gesundheit zu erhalten. Durch Sport und Bewegung werden Anpassungs- und Reparaturmechanismen in verschiedenen Organsystemen und Zellen wie der Muskulatur, den Nerven, Gefäßen, im Immunsystem oder Gehirn ausgelöst, die helfen können, Krankheiten abzuwehren [8] [9] [10] [11].

Es muss dabei keine körperliche Höchstleistung erbracht werden. Belastungen nach dem Motto „Laufen ohne Schnaufen“ bringen bereits gute Gesundheitsergebnisse. Neben gezielten Bewegungsmaßnahmen wird als effektiver Ansatz auch die Ausweitung der Chancen für Bewegung im Rahmen der Alltagsaktivitäten empfohlen. Nach den Empfehlungen der American Diabetes Association (ADA) aus dem Jahr 2024 sollen sich Erwachsene mit Diabetes 150 Minuten und mehr in moderater Intensität pro Woche bewegen. Jüngere und körperlich fitte Patienten können sich auch intensiver belasten (Mindestempfehlung: 75 Minuten/Woche). Die Bewegung sollte verteilt sein auf mindestens 3 Tage, wobei nicht mehr als 2 bewegungsarme Tage hintereinander liegen sollten. Außerdem wird empfohlen, 2- bis 3-mal pro Woche Krafttraining durchzuführen, aber nicht an aufeinanderfolgenden Tagen. Sitzphasen sollen alle 30 Minuten unterbrochen werden. Für Ältere wird 2- bis 3-mal pro Woche zusätzlich Flexibilitäts- und Gleichgewichtstraining empfohlen. Auch alternative Sportarten wie Yoga und Tai-Chi können geeignet sein. Zur Adipositasbehandlung sind Bewegungsumfänge von 200 bis 300 Minuten pro Woche und ein Energiedefizit von ca. 500 bis 750 kcal/Tag anzustreben [1]. Für Kinder und Jugendliche gilt eine Empfehlung für moderate bis anstrengende Bewegung von mindestens 60 Minuten Dauer/Tag [1].

Diese Praxisleitlinie soll die pathophysiologischen Hintergründe und therapeutischen Optionen zur Bedeutung von körperlicher Aktivität in der Therapie des Diabetes mellitus in Grundzügen umreißen und praktische Empfehlungen für die Umsetzung bei Typ-1- und Typ-2-Patienten geben.



Publication History

Article published online:
21 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 American Diabetes Association. Standards in medical care in diabetes 2024. Diabetes Care 2023; 47: S77-S110
  • 2 Toor S, Yardley JE, Momeni Z. Type 1 Diabetes and the Menstrual Cycle: Where/How Does Exercise Fit in?. Int J Environ Res Public Health 2023; 20: 2772
  • 3 Bretschneider MP, Schwarz PEH. Digitale Gesundheitsanwendungen – digitale Diabetestherapie mit CGM. Diabetes aktuell 2024; 22: 96-97
  • 4 Von Stengel S, Fröhlich M, Ludwig O. et al. Recommended contraindications for the use of non-medical WB-electromyostimulation. Front Sports Act Living 2024; 16: 6
  • 5 Wang T, Laher I, Li S. Exercise snacks and physical fitness in sedentary populations. Sports Med Health Sci 2024;
  • 6 Krouwel M, Greenfield SM, Chalkley A. et al. Promoting participation in physical activity through Snacktivity: A qualitative mixed methods study. PLoS One 2023; 18: e0291040
  • 7 Engeroff T, Groneberg DA, Wilke J. After Dinner Rest a While, After Supper Walk a Mile? A Systematic Review with Meta-analysis on the Acute Postprandial Glycemic Response to Exercise Before and After Meal Ingestion in Healthy Subjects and Patients with Impaired Glucose Tolerance. Sports Med 2023; 53: 849-869
  • 8 Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 2015; 25 (Suppl. 03) 1-72
  • 9 Kirchner H, Osler ME, Krook A. et al. Epigenetic flexibility in metabolic regulation: disease cause and prevention?. Trends Cell Biol 2013; 23: 203-209
  • 10 Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol 2015; 11: 86-97
  • 11 Fiuza-Luces C, Garatachea N, Berger NA. et al. Exercise is the real polypill. Physiology 2013; 28: 330-358
  • 12 Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 2014; 38: 308-314
  • 13 Herbst A, Kordonouri O, Schwab KO. et al. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23251 patients. Diabetes Care 2007; 30: 2098-2100
  • 14 Tonoli C, Heyman E, Roelands B. et al. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports Med 2012; 42: 1059-1080
  • 15 Riddell MC, Li Z, Gal RL. et al. Examining the acute glycemic effects of different types of structured exercise sessions in type 1 diabetes in a real-world setting: The type 1 diabetes and exercise initiative (T1DEXI). Diabetes Care 2023; 46: 704-713
  • 16 Riddell MC, Peters AL. Exercise in adults with type 1 diabetes mellitus. Nat Rev Endocrinol 2023; 19: 98-111
  • 17 Riddell MC, Gallen IW, Smart CE. et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol 2017; 5: 377-390
  • 18 Moser O, Riddell MC, Eckstein ML. et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Diabetologia 2020; 63: 2501-2520
  • 19 Roberts AJ, Taplin CE. Exercise in Youth with Type 1 Diabetes. Curr Pediatr Rev 2015; 11: 120-125
  • 20 Pivovarov JA, Taplin CE, Riddell MC. Current perspectives on physical activity and exercise for youth with diabetes. Pediatr Diabetes 2015; 16: 242-255
  • 21 Bally L, Laimer M, Stettler C. Exercise-associated glucose metabolism in individuals with type 1 diabetes mellitus. Curr Opin Clin Nutr Metab Care 2015; 18: 428-433
  • 22 Garcia-Garcia F, Kumareswaran K, Hovorka R. et al. Quantifying the acute changes in glucose with exercise in type 1 diabetes: a systematic review and meta-analysis. Sports Med 2015; 45: 587-599
  • 23 Riddell MC, Scott SN, Fournier PA. et al. The competitive athlete with type 1 diabetes. Diabetologia 2020; 63: 1475-1490
  • 24 Toghi-Eshghi SR, Yardley JE. Morning (fasting) vs afternoon resistance exercise in individuals with type 1 diabetes: a randomized crossover study. J Clin Endocrinol Metab 2019; 104: 5217-5224
  • 25 Aronson R, Brown RE, Li A. et al. Optimal insulin correction factor in post high-intensity exercise hyperglycemia in adults with type 1 diabetes: the FIT study. Diabetes Care 2019; 42: 10-16
  • 26 Lean ME, Leslie WS, Barnes AC. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster randomised trial. Lancet 2018; 391: 541-551
  • 27 Lean MEJ, Leslie WS, Barnes AC. Durability of a primary care-led weight management intervention for remission of type 2 diabetes: 2 year results of the DiRECT open-label, cluster randomised trial. Lancet Diabetes Endocrinol 2019; 7: 344-355
  • 28 Röhling M, Herder C, Roden M. et al. Effects of Long-Term Exercise Interventions on Glycaemic Control in Type 1 and Type 2 Diabetes: a Systematic Review. Exp Clin Endocrinol Diabetes 2016; 124: 487-494
  • 29 Umpierre D, Ribeiro PA, Kramer CK. et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 2011; 305: 1790-1799
  • 30 Wing RR, Bolin P, Brancati FL. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 31 Goldberg RB, Orchard TJ, Crandall JP. et al. Effects of long-term metformin and lifestyle interventions on cardiovascular events in the diabetes prevention program and its outcome study. Circulation 2022; 145: 1632-1641
  • 32 Rietz M, Lehr A, Mino E. et al. Physical activity and risk of major diabetes-related complications in individuals with diabetes: a systematic review and meta-analysis of observational studies. Diabetes Care 2022; 45: 3101-3111
  • 33 Banach M, Lewek J, Surma S. et al. The association between daily step count and all-cause and cardiovascular mortality: a meta-analysis. Eur J Prev Cardiol 2023; 30: 1975-1985
  • 34 Colberg SR, Laan R, Dassau E. et al. Physical activity and type 1 diabetes: time for a rewire?. J Diabetes Sci Technol 2015; 9: 609-618
  • 35 Jayawardene DC, McAuley SA, Horsburgh JC. et al. Closed-loop insulin delivery for adults with type 1 diabetes undertaking high-intensity interval exercise versus moderate-intensity exercise: a randomized, crossover study. Diabetes Technol Ther 2017; 19: 340-348
  • 36 Breton MD, Chernavvsky DR, Forlenza GP. et al. Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes: the artificial pancreas ski study. Diabetes Care 2017; 40: 1644-1650
  • 37 Dovc K, Macedoni M, Bratina N. et al. Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: a randomised controlled crossover trial. Diabetologia 2017; 60: 2157-2167
  • 38 Porter M, Fonda S, Swigert T. et al. Real-time continuous glucose monitoring to support self-care: results from a pilot study of patients with type 2 diabetes. J Diabetes Sci Technol 2022; 16: 578-580
  • 39 Taylor PJ, Thompson CH, Luscombe-Marsh ND. et al. Tolerability and acceptability of real-time continuous glucose monitoring and its impact on diabetes management behaviours in individuals with type 2 diabetes – A pilot study. Diabetes Res Clin Pract 2019; 155: 107814
  • 40 Vallis M, Ryan H, Berard L. et al. How continuous glucose monitoring can motivate self-management: Can motivation follow behaviour?. Can J Diabetes 2023; S1499-S2671: 00064–3
  • 41 Ding S, Schumacher M. Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors 2016; 16: 589
  • 42 Lunde P, Blakstad Nilsson B, Bergland A. et al. The effectiveness of smartphone apps for lifestyle improvement in noncommunicable diseases: systematic review and meta-analyses. J Med Internet Res 2018; 20: 1-12
  • 43 Wu X, Guo X, Zhang Z. The efficacy of mobile phone apps for lifestyle modification in diabetes: systematic review and meta-analysis. JMIR mHealth uHealth 2019; 7: e12297
  • 44 Yom-Tov E, Feraru G, Kozdoba M. et al. Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. J Med Internet Res 2017; 19: e338
  • 45 Jimenez G, Lum E, Car J. Examining diabetes management apps recommended from a Google search: content analysis. JMIR mHealth uHealth 2019; 7: e11848
  • 46 Pais S, Parry D, Petrova K. et al. Acceptance of using an ecosystem of mobile apps for use in diabetes clinic for self-management of gestational diabetes mellitus. Stud Health Technol Inform 2017; 245: 188-192
  • 47 Kordonouri O, Riddell MC. Use of apps for physical activity in type 1 diabetes: current status and requirements for future development. Ther Adv Endocrinol Metab 2019; 10: 1-7
  • 48 Thomas JG, Bond DS, Raynor HA. et al. Comparison of smartphone-based behavioral obesity treatment with gold standard group treatment and control: a randomized trial. Obesity (Silver Spring) 2019; 27: 572-580
  • 49 Schütte L. Digitale Selbsthilfe. Digitalisierungs- und Technologiereport Diabetes. 2019 Accessed May 26, 2019 at: https://www.dutreport.de/wp-content/uploads/2019/01/Selbsthilfe_Schuette.pdf
  • 50 Staiano AE, Beyl RA, Guan W. et al. Home-based exergaming among children with overweight/obesity: a randomized clinical trial. Pediatr Obes 2018; 13: 724-733
  • 51 Cooper AR, Tibbitts B, England C. et al. Potential of electric bicycles to improve the health of people with type 2 diabetes: a feasibility study. Diabet Med 2018; 35: 1279-1282
  • 52 van der Berg JD, Stehouwer CD, Bosma H. et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. Diabetologia 2016; 59: 709-718
  • 53 Dunstan DW, Dogra S, Carter SE. et al. Sit less and move more for cardiovascular health: emerging insights and opportunities. Nat Rev Cardiol 2021; 18: 637-648
  • 54 Duvivier BM, Schaper NC, Hesselink MK. et al. Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia 2017; 60: 490-498
  • 55 Han HO, Lim J, Viskochil R. et al. Pilot study of impact of a pedal desk on postprandial responses in sedentary workers. Med Sci Sports Exerc 2018; 50: 2156-2163
  • 56 Karstoft K, Winding K, Knudsen SH. et al. The effects of free-living interval walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 2013; 36: 228-236
  • 57 Yang Z, Scott AC, Mao C. et al. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports Med 2014; 44: 487-499
  • 58 van Buuren F, Horstkotte D, Mellwig KP. et al. Electrical myostimulation (EMS) improves glucose metabolism and oxygen uptake in type 2 diabetes mellitus patients – results from the EMS study. Diabetes Technol Ther 2015; 17: 413-419
  • 59 Robinson CC, Barreto RP, Sbruzzi G. et al. The effects of whole body vibration in patients with type 2 diabetes: a systematic review and metaanalysis of randomized controlled trials. Braz J Phys Ther 2016; 20: 4-14
  • 60 Kempf K, Martin S. Autonomous exercise game use improves metabolic control and quality of life in type 2 diabetes patients – a randomized controlled trial. BMC Endocr Disord 2013; 13: 57
  • 61 Baskerville R, Ricci-Cabello I, Roberts N. et al. Impact of accelerometer and pedometer use on physical activity and glycaemic control in people with type 2 diabetes: a systematic review and meta-analysis. Diabet Med 2017; 5: 612-620