Subscribe to RSS
DOI: 10.1055/a-2316-6808
Effects of Air Pollution and Meteorological Conditions on DED: Associated Manifestations and Underlying Mechanisms
Auswirkungen von Luftverschmutzung und meteorologischen Bedingungen auf DED: damit verbundene Erscheinungsformen und zugrunde liegende Mechanismen This work was supported by National Natural Science Foundation of China under Grant [82171023]; Science and Technology Department of Jilin Province Fund under Grant [20210101279JC]; Bethune Center for Medical Engineering and Instrumentation under Grant [BQEGCZX20210XX].Abstract
This study aims to explore the associations and the underlying mechanism among dry eye disease (DED), air pollution, and meteorological conditions. DED is positively correlated with air pollutants (i.e., PM2.5, PM10, O3, NO2, CO, and SO2) and meteorological conditions (i.e., high altitude and wind speed), while negatively associated with relative humidity. Both low and high air temperatures effect DED. Atmospheric pollutants affect DED mainly through necroptosis or autophagy, inflammatory responses, and oxidative stress. Meteorological factors affect DED not only by their own affects but also by dispersing the concentration of air pollutants, and then reducing the negative exposure. In summary, this review may expand the understanding of the effects of air pollution and meteorological factors on DED and emphasize the importance of air environmental protection.
Zusammenfassung
Ziel dieser Studie war es, den Zusammenhang zwischen trockenem Auge, Luftverschmutzung und meteorologischen Bedingungen und den ihnen zugrunde liegenden Mechanismen zu untersuchen. Die Erkrankung des trockenen Auges (DED) war positiv mit Luftschadstoffen (d. h. PM2.5, PM10, O3, NO2, CO und SO2) und meteorologischen Bedingungen (d. h. große Höhe und Windgeschwindigkeit) und negativ mit der relativen Luftfeuchtigkeit korreliert. Die DED wurde sowohl von niedrigen als auch von hohen Lufttemperaturen und von meteorologischen Faktoren beeinflusst, hauptsächlich durch Nekrose oder Autophagie und oxidativen Stress. Sowohl niedrige als auch hohe Temperaturen beeinflussen DED. Luftschadstoffe beeinflussen DED hauptsächlich durch Nekrose oder Autophagie, Entzündungsreaktionen und oxidativen Stress. Meteorologische Faktoren beeinflussen DED nicht nur allein, sondern auch durch die Verteilung von Luftschadstoffkonzentrationen und somit durch die Verringerung der negativen Exposition. Zusammenfassend lässt sich sagen, dass diese Übersichtsarbeit das Verständnis der Auswirkungen von Luftverschmutzung und meteorologischen Faktoren auf DED erweitern und die Bedeutung des Umweltschutzes in der Luft unterstreichen kann.
Keywords
dry eye disease - air pollution - meteorological conditions - particulate matter - mechanismsSchlüsselwörter
Erkrankung des trockenen Auges - Luftverschmutzung - meteorologische Bedingungen - Feinstaub - MechanismusPublication History
Received: 29 November 2023
Accepted: 18 April 2024
Accepted Manuscript online:
30 April 2024
Article published online:
24 July 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Craig JP, Nichols KK, Akpek EK. et al. TFOS DEWS II Definition and Classification Report. Ocul Surf 2017; 15: 276-283
- 2 Yu J, Asche CV, Fairchild CJ. The economic burden of dry eye disease in the United States: a decision tree analysis. Cornea 2011; 30: 379-387
- 3 Lu CW, Fu J, Liu XF. et al. Air pollution and meteorological conditions significantly contribute to the worsening of allergic conjunctivitis: a regional 20-city, 5-year study in Northeast China. Light Sci Appl 2021; 10: 190
- 4 Lu CW, Fu J, Liu XF. et al. Impacts of air pollution and meteorological conditions on dry eye disease among residents in a northeastern Chinese metropolis: a six-year crossover study in a cold region. Light Sci Appl 2023; 12: 186
- 5 Jia S, She W, Pi Z. et al. Effectiveness of cascading time series models based on meteorological factors in improving health risk prediction. Environ Sci Pollut Res Int 2022; 29: 9944-9956
- 6 Weitekamp CA, Stevens T, Stewart MJ. et al. Health effects from freshly emitted versus oxidatively or photochemically aged air pollutants. Sci Total Environ 2020; 704: 135772
- 7 Zhong JY, Lee YC, Hsieh CJ. et al. Association between Dry Eye Disease, Air Pollution and Weather Changes in Taiwan. Int J Environ Res Public Health 2018; 15: 2269
- 8 Tan G, Li J, Yang Q. et al. Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci Rep 2018; 8: 17828
- 9 Li J, Tan G, Ding X. et al. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10. Biomed Pharmacother 2017; 96: 524-534
- 10 Mu N, Wang H, Chen D. et al. A Novel Rat Model of Dry Eye Induced by Aerosol Exposure of Particulate Matter. Invest Ophthalmol Vis Sci 2022; 63: 39
- 11 Yang Q, Li K, Li D. et al. Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed Pharmacother 2019; 117: 109177
- 12 Fu Q, Lyu D, Zhang L. et al. Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ Pollut 2017; 227: 314-322
- 13 Shi K, Yin Q, Tang X. et al. Necroptosis contributes to airborne particulate matter-induced ocular surface injury. Toxicology 2022; 470: 153140
- 14 Ghosh AK, Bacellar-Galdino M, Iqbal S. et al. Topical Porphyrin Antioxidant Protects Against Ocular Surface Pathology in a Novel Rabbit Model for Particulate Matter-Induced Dry Eye Disease. J Ocul Pharmacol Ther 2022; 38: 294-304
- 15 Hao R, Zhang M, Zhao L. et al. Impact of Air Pollution on the Ocular Surface and Tear Cytokine Levels: A Multicenter Prospective Cohort Study. Front Med (Lausanne) 2022; 9: 909330
- 16 Lee HS, Han S, Seo JW. et al. Exposure to Traffic-Related Particulate Matter 2.5 Triggers Th2-Dominant Ocular Immune Response in a Murine Model. Int J Environ Res Public Health 2020; 17: 2965
- 17 Yu D, Cai W, Shen T. et al. PM2.5 exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol Toxicol 2023; 39: 2615-2630
- 18 Han JY, Kang B, Eom Y. et al. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model. Cornea 2017; 36: 605-610
- 19 Gao ZX, Song XL, Li SS. et al. Assessment of DNA Damage and Cell Senescence in Corneal Epithelial Cells Exposed to Airborne Particulate Matter (PM2.5) Collected in Guangzhou, China. Invest Ophthalmol Vis Sci 2016; 57: 3093-3102
- 20 Hwang SH, Choi YH, Paik HJ. et al. Potential Importance of Ozone in the Association Between Outdoor Air Pollution and Dry Eye Disease in South Korea. JAMA Ophthalmol 2016; 134: 503-510
- 21 Kim Y, Paik HJ, Kim MK. et al. Short-Term Effects of Ground-Level Ozone in Patients With Dry Eye Disease: A Prospective Clinical Study. Cornea 2019; 38: 1483-1488
- 22 Keramatnejad M, DeWolf C. Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes. Membranes (Basel) 2023; 13: 165
- 23 Lee H, Kim EK, Kang SW. et al. Effects of ozone exposure on the ocular surface. Free Radic Biol Med 2013; 63: 78-89
- 24 Mu J, Zeng D, Zeng H. Effects of nitrogen dioxide exposure on the risk of eye and adnexa diseases among children in Shenzhen, China: an assessment using the generalized additive modeling approach. Int J Environ Health Res 2022; 32: 840-849
- 25 Mu J, Zeng D, Fan J. et al. Associations Between Air Pollution Exposure and Daily Pediatric Outpatient Visits for Dry Eye Disease: A Time-Series Study in Shenzhen, China. Int J Public Health 2021; 66: 1604235
- 26 Berg EJ, Ying GS, Maguire MG. et al. Climatic and Environmental Correlates of Dry Eye Disease Severity: A Report From the Dry Eye Assessment and Management (DREAM) Study. Transl Vis Sci Technol 2020; 9: 25
- 27 Bind MA, Baccarelli A, Zanobetti A. et al. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology 2012; 23: 332-340
- 28 Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 2012; 34: 43-62
- 29 Chung CJ, Hsia NY, Wu CD. et al. Exposure to Ambient NO2 Increases the Risk of Dry Eye Syndrome in Females: An 11-Year Population-Based Study. Int J Environ Res Public Health 2021; 18: 6860
- 30 Yu D, Deng Q, Wang J. et al. Air Pollutants are associated with Dry Eye Disease in Urban Ophthalmic Outpatients: a Prevalence Study in China. J Transl Med 2019; 17: 46
- 31 Um SB, Kim NH, Lee HK. et al. Spatial epidemiology of dry eye disease: findings from South Korea. Int J Health Geogr 2014; 13: 31
- 32 Youn JS, Seo JW, Park W. et al. Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations. Int J Environ Res Public Health 2020; 17: 4969
- 33 Paschides CA, Stefaniotou M, Papageorgiou J. et al. Ocular surface and environmental changes. Acta Ophthalmol Scand 1998; 76: 74-77
- 34 Borchman D, Foulks GN, Yappert MC. et al. Factors affecting evaporation rates of tear film components measured in vitro. Eye Contact Lens 2009; 35: 32-37
- 35 Ho WT, Chiu CY, Chang SW. Low ambient temperature correlates with the severity of dry eye symptoms. Taiwan J Ophthalmol 2022; 12: 191-197
- 36 Butovich IA, Arciniega JC, Wojtowicz JC. Meibomian lipid films and the impact of temperature. Invest Ophthalmol Vis Sci 2010; 51: 5508-5518
- 37 Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol 1973; 12: 596-602
- 38 Bron AJ, Tiffany JM, Gouveia SM. et al. Functional aspects of the tear film lipid layer. Exp Eye Res 2004; 78: 347-360
- 39 Versura P, Giannaccare G, Fresina M. et al. Subjective Discomfort Symptoms Are Related to Low Corneal Temperature in Patients With Evaporative Dry Eye. Cornea 2015; 34: 1079-1085
- 40 Gupta N, Prasad I, Himashree G. et al. Prevalence of dry eye at high altitude: a case controlled comparative study. High Alt Med Biol 2008; 9: 327-334
- 41 Lu P, Chen X, Liu X. et al. Dry eye syndrome in elderly Tibetans at high altitude: a population-based study in China. Cornea 2008; 27: 545-551
- 42 Li Z, Wan W, Ji Y. et al. Functional and morphological evaluation of the meibomian glands and ocular surface assessment at high altitude. Indian J Ophthalmol 2023; 71: 1483-1487
- 43 Willmann G, Schatz A, Fischer MD. et al. Exposure to high altitude alters tear film osmolarity and breakup time. High Alt Med Biol 2014; 15: 203-207
- 44 Mo Z, Fu Q, Lyu D. et al. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: A case-crossover study. Environ Pollut 2019; 246: 183-189
- 45 Huang A, Janecki J, Galor A. et al. Association of the Indoor Environment With Dry Eye Metrics. JAMA Ophthalmol 2020; 138: 867-874
- 46 Abusharha AA, Pearce EI. The effect of low humidity on the human tear film. Cornea 2013; 32: 429-434
- 47 Uchiyama E, Aronowicz JD, Butovich IA. et al. Increased evaporative rates in laboratory testing conditions simulating airplane cabin relative humidity: an important factor for dry eye syndrome. Eye Contact Lens 2007; 33: 174-176
- 48 Barabino S, Shen L, Chen L. et al. The controlled-environment chamber: a new mouse model of dry eye. Invest Ophthalmol Vis Sci 2005; 46: 2766-2771
- 49 Wyon NM, Wyon DP. Measurement of acute response to draught in the eye. Acta Ophthalmol (Copenh) 1987; 65: 385-392
- 50 Galor A, Kumar N, Feuer W. et al. Environmental factors affect the risk of dry eye syndrome in a United States veteran population. Ophthalmology 2014; 121: 972-973