Subscribe to RSS
DOI: 10.1055/a-2329-2866
Multiparametric ultrasound evaluation of thyroid nodules
Article in several languages: English | deutschAbstract
Thyroid nodules are common incidental findings. Most of them are benign, but many unnecessary fine-needle aspiration procedures, core biopsies, and even thyroidectomies or non-invasive treatments have been performed. To improve thyroid nodule characterization, the use of multiparametric ultrasound evaluation has been encouraged by most experts and several societies. In particular, US elastography for assessing tissue stiffness and CEUS for providing insight into vascularization contribute to improved characterization. Moreover, the application of AI, particularly machine learning and deep learning, enhances diagnostic accuracy. Furthermore, AI-based computer-aided diagnosis (CAD) systems, integrated into the diagnostic process, aid in risk stratification and minimize unnecessary interventions. Despite these advancements, challenges persist, including the need for standardized TIRADS, the role of US elastography in routine practice, and the integration of AI into clinical protocols. However, the integration of clinical information, laboratory information, and multiparametric ultrasound features remains crucial for minimizing unnecessary interventions and guiding appropriate treatments. In conclusion, ultrasound plays a pivotal role in thyroid nodule management. Open questions regarding TIRADS selection, consistent use of US elastography, and the role of AI-based techniques underscore the need for ongoing research. Nonetheless, a comprehensive approach combining clinical, laboratory, and ultrasound data is recommended to minimize unnecessary interventions and treatments.
Publication History
Article published online:
06 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Meisinger C, Ittermann T, Wallaschofski H. et al. Geographic variations in the frequency of thyroid disorders and thyroid peroxidase antibodies in persons without former thyroid disease within Germany. Eur J Endocrinol 2012; 167 (03) 363-371 DOI: 10.1530/EJE-12-0111.
- 2 Knudsen N, Brix TH. Genetic and non-iodine-related factors in the aetiology of nodular goitre. Best Pract Res Clin Endocrinol Metab 2014; 28 (04) 495-506 DOI: 10.1016/j.beem.2014.02.005.
- 3 Carlé A, Krejbjerg A, Laurberg P. Epidemiology of nodular goitre. Influence of iodine intake. Best Pract Res Clin Endocrinol Metab 2014; 28 (04) 465-479 DOI: 10.1016/j.beem.2014.01.001.
- 4 Zimmermann MB, Andersson M. GLOBAL ENDOCRINOLOGY: Global perspectives in endocrinology: coverage of iodized salt programs and iodine status in 2020. Eur J Endocrinol 2021; 185 (01) R13-R21 DOI: 10.1530/EJE-21-0171.
- 5 Petersen M, Bülow Pedersen I, Knudsen N. et al. Changes in subtypes of overt thyrotoxicosis and hypothyroidism following iodine fortification. Clin Endocrinol (Oxf) 2019; 91 (05) 652-659 DOI: 10.1111/cen.14072.
- 6 Schaffner M, Rochau U, Stojkov I. et al. Barriers Against Prevention Programs for Iodine Deficiency Disorders in Europe: A Delphi Study. Thyroid 2021; 31 (04) 649-657 DOI: 10.1089/thy.2020.0065.
- 7 Dighe M, Barr R, Bojunga J. et al. Thyroid Ultrasound: State of the Art Part 1 – Thyroid Ultrasound reporting and Diffuse Thyroid Diseases. Med Ultrason 2017; 19 (01) 79-93 DOI: 10.11152/mu-980.
- 8 Dighe M, Barr R, Bojunga J. et al. Thyroid Ultrasound: State of the Art. Part 2 – Focal Thyroid Lesions. Med Ultrason 2017; 19 (02) 195-210 DOI: 10.11152/mu-999.
- 9 Haymart MR, Banerjee M, Reyes-Gastelum D. et al. Thyroid Ultrasound and the Increase in Diagnosis of Low-Risk Thyroid Cancer. J Clin Endocrinol Metab 2019; 104 (03) 785-792 DOI: 10.1210/jc.2018-01933.
- 10 Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med 2004; 351 (17) 1764-1771 DOI: 10.1056/NEJMcp031436.
- 11 Grussendorf M, Ruschenburg I, Brabant G. Malignancy rates in thyroid nodules: a long-term cohort study of 17,592 patients. Eur Thyroid J 2022; 11 (04) e220027 DOI: 10.1530/ETJ-22-0027.
- 12 Edwards MK, Iñiguez-Ariza NM, Singh Ospina N. et al. Inappropriate use of thyroid ultrasound: a systematic review and meta-analysis. Endocrine 2021; 74 (02) 263-269 DOI: 10.1007/s12020-021-02820-z.
- 13 Furuya-Kanamori L, Bell KJL, Clark J. et al. Prevalence of Differentiated Thyroid Cancer in Autopsy Studies Over Six Decades: A Meta-Analysis. J Clin Oncol 2016; 34 (30) 3672-3679 DOI: 10.1200/JCO.2016.67.7419.
- 14 Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer “epidemic” – screening and overdiagnosis. N Engl J Med 2014; 371 (19) 1765-1767 DOI: 10.1056/NEJMp1409841.
- 15 Ahn HS, Kim HJ, Kim KH. et al. Thyroid Cancer Screening in South Korea Increases Detection of Papillary Cancers with No Impact on Other Subtypes or Thyroid Cancer Mortality. Thyroid 2016; 26 (11) 1535-1540 DOI: 10.1089/thy.2016.0075.
- 16 Chou R, Dana T, Haymart M. et al. Active Surveillance Versus Thyroid Surgery for Differentiated Thyroid Cancer: A Systematic Review. Thyroid 2022; 32 (04) 351-367 DOI: 10.1089/thy.2021.0539.
- 17 Vaccarella S, Franceschi S, Bray F. et al. Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis. N Engl J Med 2016; 375 (07) 614-617 DOI: 10.1056/NEJMp1604412.
- 18 Reinke R, Mathiesen JS, Larsen SR. et al. A study from The Danish Thyroid Cancer Group – DATHYRCA (part of the DAHANCA organization). Incidental and Non-incidental Papillary Thyroid Microcarcinoma in Denmark 1996–2015: A national study on incidence, outcome and thoughts on active surveillance. Cancer Epidemiol 2019; 60: 46-50 DOI: 10.1016/j.canep.2019.03.011.
- 19 US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC. et al. Screening for Thyroid Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2017; 317 (18) 1882-1887 DOI: 10.1001/jama.2017.4011.
- 20 Jin J, McHenry CR. Thyroid incidentaloma. Best Pract Res Clin Endocrinol Metab 2012; 26 (01) 83-96 DOI: 10.1016/j.beem.2011.06.004.
- 21 Fresilli D, David E, Pacini P. et al. Thyroid Nodule Characterization: How to Assess the Malignancy Risk. Update of the Literature. Diagnostics (Basel) 2021; 11 (08) 1374 DOI: 10.3390/diagnostics11081374.
- 22 Durante C, Grani G, Lamartina L. et al. The Diagnosis and Management of Thyroid Nodules: A Review. JAMA 2018; 319 (09) 914-924 DOI: 10.1001/jama.2018.0898.
- 23 Feldkamp J, Schott M, Gogol M. et al. Die Klug-entscheiden-Initiative der Deutschen Gesellschaft für Innere Medizin: Empfehlungen der Deutschen Gesellschaft für Endokrinologie und der Deutschen Gesellschaft für Geriatrie [The Choosing Wisely Initiative of the German Society of Internal Medicine: Recommendations of the German Society for Endocrinology and the German Society for Geriatrics]. Internist (Berl) 2016; 57 (06) 532-539 DOI: 10.1007/s00108-016-0072-4.
- 24 Remonti LR, Kramer CK, Leitão CB. et al. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 2015; 25 (05) 538-550 DOI: 10.1089/thy.2014.0353.
- 25 Rago T, Vitti P. Risk Stratification of Thyroid Nodules: From Ultrasound Features to TIRADS. Cancers (Basel) 2022; 14 (03) 717 DOI: 10.3390/cancers14030717.
- 26 Cosgrove D, Barr R, Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43 (01) 4-26 DOI: 10.1016/j.ultrasmedbio.2016.06.022.
- 27 Cosgrove D, Barr R, Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43 (01) 4-26 DOI: 10.1016/j.ultrasmedbio.2016.06.022.
- 28 Kim PH, Suh CH, Baek JH. et al. Diagnostic Performance of Four Ultrasound Risk Stratification Systems: A Systematic Review and Meta-Analysis. Thyroid 2020; 30 (08) 1159-1168 DOI: 10.1089/thy.2019.0812.
- 29 Grani G, Lamartina L, Ascoli V. et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS. J Clin Endocrinol Metab 2019; 104 (01) 95-102 DOI: 10.1210/jc.2018-01674.
- 30 Hoang JK, Middleton WD, Farjat AE. et al. Reduction in Thyroid Nodule Biopsies and Improved Accuracy with American College of Radiology Thyroid Imaging Reporting and Data System. Radiology 2018; 287 (01) 185-193 DOI: 10.1148/radiol.2018172572.
- 31 Trimboli P, Castellana M, Piccardo A. et al. The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Rev Endocr Metab Disord 2021; 22 (02) 453-460 DOI: 10.1007/s11154-020-09592-3.
- 32 Castellana M, Virili C, Paone G. et al. Ultrasound systems for risk stratification of thyroid nodules prompt inappropriate biopsy in autonomously functioning thyroid nodules. Clin Endocrinol (Oxf) 2020; 93 (01) 67-75 DOI: 10.1111/cen.14204.
- 33 Matrone A, Gambale C, Biagini M. et al. Ultrasound features and risk stratification systems to identify medullary thyroid carcinoma. Eur J Endocrinol 2021; 185 (02) 193-200 DOI: 10.1530/EJE-21-0313.
- 34 Sugitani I, Ito Y, Takeuchi D. et al. Indications and Strategy for Active Surveillance of Adult Low-Risk Papillary Thyroid Microcarcinoma: Consensus Statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. Thyroid 2021; 31 (02) 183-192 DOI: 10.1089/thy.2020.0330.
- 35 Durante C, Hegedüs L, Czarniecka A. et al. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J 2023; 12 (05) e230067 DOI: 10.1530/ETJ-23-0067.
- 36 Broecker-Preuss M, Simon D, Fries M. et al. Update on Calcitonin Screening for Medullary Thyroid Carcinoma and the Results of a Retrospective Analysis of 12,984 Patients with Thyroid Nodules. Cancers (Basel) 2023; 15 (08) 2333 DOI: 10.3390/cancers15082333.
- 37 Na DG, Kim JH, Kim DS. et al. Thyroid nodules with minimal cystic changes have a low risk of malignancy. Ultrasonography 2016; 35 (02) 153-158 DOI: 10.14366/usg.15070.
- 38 Xu T, Wu Y, Wu RX. et al. Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination. Endocrine 2019; 64 (02) 299-307 DOI: 10.1007/s12020-018-1817-8.
- 39 Song X, Luo Z, Sun H. et al. Systematic review and meta-analysis of the diagnostic value of radionuclide imaging for thyroid nodules. Gland Surg 2021; 10 (12) 3351-3361 DOI: 10.21037/gs-21-766.
- 40 Grani G, Sponziello M, Pecce V. et al. Contemporary Thyroid Nodule Evaluation and Management. J Clin Endocrinol Metab 2020; 105 (09) 2869-2883 DOI: 10.1210/clinem/dgaa322.
- 41 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26 (01) 1-133 DOI: 10.1089/thy.2015.0020.
- 42 Gharib H, Papini E, Garber JR. et al. AACE/ACE/AME Task Force on Thyroid Nodules. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS, AMERICAN COLLEGE OF ENDOCRINOLOGY, AND ASSOCIAZIONE MEDICI ENDOCRINOLOGI MEDICAL GUIDELINES FOR CLINICAL PRACTICE FOR THE DIAGNOSIS AND MANAGEMENT OF THYROID NODULES – 2016 UPDATE. Endocr Pract 2016; 22 (05) 622-639 DOI: 10.4158/EP161208.GL.
- 43 Russ G, Bonnema SJ, Erdogan MF. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6 (05) 225-237 DOI: 10.1159/000478927.
- 44 Shin JH, Baek JH, Chung J. et al. Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol 2016; 17 (03) 370-395 DOI: 10.3348/kjr.2016.17.3.370.
- 45 Tessler FN, Middleton WD, Grant EG. et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol 2017; 14 (05) 587-595 DOI: 10.1016/j.jacr.2017.01.046.
- 46 Zhou J, Yin L, Wei X. et al. Superficial Organ and Vascular Ultrasound Group of the Society of Ultrasound in Medicine of the Chinese Medical Association; Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine 2020; 70 (02) 256-279 DOI: 10.1007/s12020-020-02441-y.
- 47 Trimboli P, Ngu R, Royer B. et al. A multicentre validation study for the EU-TIRADS using histological diagnosis as a gold standard. Clin Endocrinol (Oxf) 2019; 91 (02) 340-347 DOI: 10.1111/cen.13997.
- 48 Hoang JK, Asadollahi S, Durante C. et al. An International Survey on Utilization of Five Thyroid Nodule Risk Stratification Systems: A Needs Assessment with Future Implications. Thyroid 2022; 32 (06) 675-681 DOI: 10.1089/thy.2021.0558.
- 49 Grani G, Lamartina L, Cantisani V. et al. Interobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 2018; 7 (01) 1-7 DOI: 10.1530/EC-17-0336.
- 50 Durante C, Hegedüs L, Na DG. et al. International Expert Consensus on US Lexicon for Thyroid Nodules. Radiology 2023; 309 (01) e231481 DOI: 10.1148/radiol.231481.
- 51 Trimboli P, Castellana M, Piccardo A. et al. The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Rev Endocr Metab Disord 2021; 22 (02) 453-460 DOI: 10.1007/s11154-020-09592-3.
- 52 Săftoiu A, Gilja OH, Sidhu PS. et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall in Med 2019; 40 (04) 425-453 DOI: 10.1055/a-0838-9937.
- 53 Cantisani V, David E, Grazhdani H. et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall in Med 2019; 40 (04) 495-503 DOI: 10.1055/a-0853-1821.
- 54 Cantisani V, De Silvestri A, Scotti V. et al. US-Elastography With Different Techniques for Thyroid Nodule Characterization: Systematic Review and Meta-analysis. Front Oncol 2022; 12: 845549 DOI: 10.3389/fonc.2022.845549.
- 55 Gürkan Dumlu E, Kiyak G, Bozkurt B. et al. Correlation of thyroid fine-needle aspiration with final histopathology: a case series. Minerva Chir 2013; 68 (02) 191-197
- 56 Asteria C, Giovanardi A, Pizzocaro A. et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 2008; 18 (05) 523-531 DOI: 10.1089/thy.2007.0323.
- 57 Cantisani V, Bertolotto M, Clevert DA. et al. EFSUMB 2020 Proposal for a Contrast-Enhanced Ultrasound-Adapted Bosniak Cyst Categorization – Position Statement. Ultraschall in Med 2021; 42 (02) 154-166 DOI: 10.1055/a-1300-1727.
- 58 Brandenstein M, Wiesinger I, Künzel J. et al. Multiparametric Sonographic Imaging of Thyroid Lesions: Chances of B-Mode, Elastography and CEUS in Relation to Preoperative Histopathology. Cancers (Basel) 2022; 14 (19) 4745 DOI: 10.3390/cancers14194745.
- 59 Sorrenti S, Dolcetti V, Fresilli D. et al. The Role of CEUS in the Evaluation of Thyroid Cancer: From Diagnosis to Local Staging. J Clin Med 2021; 10 (19) 4559 DOI: 10.3390/jcm10194559.
- 60 Trimboli P, Castellana M, Virili C. et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: a systematic review and meta-analysis using histological standard of reference. Radiol Med 2020; 125 (04) 406-415 DOI: 10.1007/s11547-019-01129-2.
- 61 Jung EM, Dong Y, Jung F. Current aspects of multimodal ultrasound liver diagnostics using contrast-enhanced ultrasonography (CEUS), fat evaluation, fibrosis assessment, and perfusion analysis – An update. Clin Hemorheol Microcirc 2023; 83 (02) 181-193 DOI: 10.3233/CH-239100.
- 62 Sorrenti S, Dolcetti V, Radzina M. et al. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?. Cancers (Basel) 2022; 14 (14) 3357 DOI: 10.3390/cancers14143357.
- 63 Shen YT, Chen L, Yue WW. et al. Artificial intelligence in ultrasound. Eur J Radiol 2021; 139: 109717 DOI: 10.1016/j.ejrad.2021.109717.
- 64 Ludwig M, Ludwig B, Mikuła A. et al. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers (Basel) 2023; 15 (03) 708 DOI: 10.3390/cancers15030708.
- 65 Elliott Range DD, Dov D, Kovalsky SZ. et al. Application of a machine learning algorithm to predict malignancy in thyroid cytopathology. Cancer Cytopathol 2020; 128 (04) 287-295 DOI: 10.1002/cncy.22238.
- 66 Dov D, Kovalsky SZ, Feng Q. et al. Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images. Arch Pathol Lab Med 2022; 146 (07) 872-878 DOI: 10.5858/arpa.2020-0712-OA.
- 67 Jung EM, Stroszczynski C, Jung F. Advanced multimodal imaging of solid thyroid lesions with artificial intelligence-optimized B-mode, elastography, and contrast-enhanced ultrasonography parametric and with perfusion imaging: Initial results. Clin Hemorheol Microcirc 2023; 84 (02) 227-236 DOI: 10.3233/CH-239102.