Aktuelle Ernährungsmedizin 2024; 49(04): 256-317
DOI: 10.1055/a-2338-1144
Leitlinie

S2k-Leitlinie Klinische Ernährung in der Hepatologie

herausgegeben von der Deutschen Gesellschaft für Ernährungsmedizin (DGEM)S2k guideline Clinical nutrition in Hepatologyon behalf of the German Society for Nutritional Medicine (DGEM)
Mathias Plauth
1   Städtisches Klinikum Dessau, Klinik für Innere Medizin, Dessau-Roßlau
,
Lars Bechmann
2   Universitätsklinikum Knappschaftskrankenhaus Bochum, Medizinische Klinik, Bochum
,
Donata Grajecki
3   Charité Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin
,
Felix Gundling
4   Klinikum am Bruderwald der Sozialstiftung Bamberg, Medizinische Klinik II, Bamberg
,
Ludwig Kramer
5   Wiener Gesundheitsverbund Klinik Hietzing, 1. Medizinische Abteilung mit Gastroenterologie, Wien (A)
,
Andreas E. Kremer
6   Universitätsspital Zürich, Klinik für Gastroenterologie und Hepatologie, Universität Zürich, Zürich (CH)
,
Monika Rau
7   Universitätsklinikum Würzburg, Medizinische Klinik II Schwerpunkt Hepatologie, Würzburg
,
Andrea Schneider
8   Medizinische Hochschule Hannover, Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Hannover
,
Frank Tacke
3   Charité Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin
,
Ingo van Thiel
9   Deutsche Leberhilfe e.V., Köln
› Author Affiliations

Zusammenfassung

Ziel Sowohl Über- als auch Unterernährung spielen für die Prognose von Patienten mit Leberkrankheiten eine bedeutende Rolle. Bei chronischer Leberkrankheit besteht häufig eine Mangelernährung mit gestörter Körperzusammensetzung, allerdings zeigt sich in den letzten Jahren ein Wandel des klinischen Spektrums mit Zunahme von Adipositas und sarkopener Adipositas. In der klinischen Praxis wird das Potenzial der Ernährungstherapie als metabolisches Management einer Leberkrankheit oft unterschätzt und nicht ausgeschöpft. Mit der Aktualisierung dieser Leitlinie sollen umfassende aktuelle und evidenzbasierte Empfehlungen für die Ernährungstherapie von Patienten mit Lebererkrankungen gegeben werden.

Methoden Frühere Leitlinien der Deutschen und der Europäischen Gesellschaften für Ernährungsmedizin (DGEM, ESPEN) zur Ernährung von Patienten mit Lebererkrankungen wurden entsprechend den Prinzipien der AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften) und ÄZQ (Ärztliche Zentralstelle für Qualitätssicherung) aktualisiert und vollständig überarbeitet und erweitert.

Ergebnisse Die vorliegende Leitlinie umfasst 110 im Konsentierungsverfahren ermittelte Aussagen und Empfehlungen zum ernährungsmedizinischen metabolischen Management leberkranker Patienten im Hinblick auf pathophysiologische Grundlagen, Indikationsstellung und Durchführung einer Ernährungstherapie sowie ihrer Ergebnisse. Empfehlungen werden für die Krankheitsbilder akutes Leberversagen (ALV), alkoholassoziierte Lebererkrankung (ALD), metabolische Dysfunktion-assoziierte Fettleberkrankheit (MASLD), Leberzirrhose (LZ), Lebertransplantation und Operation sowie ernährungsbedingte Leberschädigung (NALI) gegeben.

Schlussfolgerung Bei Patienten mit chronischer Lebererkrankung liegt häufig ein prognostisch ungünstiger metabolischer Status vor mit gestörter Körperzusammensetzung und Mangelernährung oder Adipositas; diese Patientengruppe profitiert von einem evidenzbasierten ernährungsmedizinischen metabolischen Management. Bei Patienten mit akutem Leberversagen ist die Datenlage wesentlich unsicherer, da nur wenige Studiendaten für diese schwere, aber seltene Erkrankung vorliegen.

Abstract

Aim Overnutrition as well as undernutrition have a major prognostic role for patients suffering from liver disease. In chronic liver disease, impaired body composition and malnutrition are common findings. In recent years, however, the clinical presentation has changed with an increasing proportion of obese and sarcopenic obese liver patients. More often than not the potential of metabolic management by nutrition support remains unrecognized and underused. The current update of this guideline is aimed at giving comprehensive, up-to-date and evidence-based recommendations for nutrition therapy in patients with liver disease.

Methods Previous guidelines of the German and European Societies for Nutritional Medicine (DGEM, ESPEN) on nutrition in patients with liver disease were updated and thoroughly revised and extended according to the requirements of the AWMF (German Association of the Scientific Medical Societies) and the ÄZQ (Agency for Quality in Medicine).

Results The present guideline comprises 110 statements and recommendations developed in a consensus process on the nutritional metabolic management of patients with liver disease with regard to pathophysiological principles, indication for and application of nutritional therapy and the resulting outcome. Recommendations address the following conditions: acute liver failure, alcohol-associated liver disease, metabolic dysfunction-associated liver disease, liver cirrhosis, liver transplantation and surgery, as well as nutrition associated liver injury.

Conclusions Patients with chronic liver disease frequently exhibit an unfavourable nutritional metabolic status with impaired body composition and malnutrition or obesity; this group of patients benefits from evidence based nutritional metabolic management. For patients with acute liver failure evidence is weak because there is only few data from studies in this severe but rare condition.

verstorben




Publication History

Article published online:
26 August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Plauth M, Bernal W, Dasarathy S. et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr 2019; 38: 485-521
  • 2 Lai JC, Tandon P, Bernal W. et al. Malnutrition, Frailty, and Sarcopenia in Patients With Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 74: 1611-1644
  • 3 Amodio P, Bemeur C, Butterworth R. et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology 2013; 58: 325-336
  • 4 Arora S, Mattina C, Catherine M. et al. PMO-040 The development and validation of a nutritional prioritising tool for use in patients with chronic liver disease. Gut 2012; 61: A90-A90
  • 5 Booi AN, Menendez J, Norton HJ. et al. Validation of a Screening Tool to Identify Undernutrition in Ambulatory Patients With Liver Cirrhosis. Nutr Clin Pract 2015; 30: 683-689
  • 6 Borhofen SM, Gerner C, Lehmann J. et al. The Royal Free Hospital-Nutritional Prioritizing Tool Is an Independent Predictor of Deterioration of Liver Function and Survival in Cirrhosis. Dig Dis Sci 2016; 61: 1735-1743
  • 7 Georgiou A, Papatheodoridis GV, Alexopoulou A. et al. Evaluation of the effectiveness of eight screening tools in detecting risk of malnutrition in cirrhotic patients: the KIRRHOS study. Br J Nutr 2019; 122: 1368-1376
  • 8 Boulhosa R, Lourenço RP, Côrtes DM. et al. Comparison between criteria for diagnosing malnutrition in patients with advanced chronic liver disease: GLIM group proposal versus different nutritional screening tools. J Hum Nutr Diet 2020; 33: 862-868
  • 9 Traub J, Bergheim I, Horvath A. et al. Validation of Malnutrition Screening Tools in Liver Cirrhosis. Nutrients 2020; 12
  • 10 Wu Y, Zhu Y, Feng Y. et al. Royal Free Hospital-Nutritional Prioritizing Tool improves the prediction of malnutrition risk outcomes in liver cirrhosis patients compared with Nutritional Risk Screening 2002. Br J Nutr 2020; 124: 1293-1302
  • 11 Schütte K, Tippelt B, Schulz C. et al. Malnutrition is a prognostic factor in patients with hepatocellular carcinoma (HCC). Clin Nutr 2015; 34: 1122-1127
  • 12 Haldar D, Kern B, Hodson J. et al. Outcomes of liver transplantation for non-alcoholic steatohepatitis: A European Liver Transplant Registry study. J Hepatol 2019; 71: 313-322
  • 13 Everhart JE, Lok AS, Kim HY. et al. Weight-related effects on disease progression in the hepatitis C antiviral long-term treatment against cirrhosis trial. Gastroenterology 2009; 137: 549-557
  • 14 Berzigotti A, Garcia-Tsao G, Bosch J. et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology 2011; 54: 555-561
  • 15 Wong RJ, Aguilar M, Cheung R. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148: 547-555
  • 16 Kim WR, Lake JR, Smith JM. et al. OPTN/SRTR 2017 Annual Data Report: Liver. Am J Transplant 2019; 19: 184-283
  • 17 Kardashian AA, Dodge JL, Roberts J. et al. Weighing the risks: Morbid obesity and diabetes are associated with increased risk of death on the liver transplant waiting list. Liver Int 2018; 38: 553-563
  • 18 Hakeem AR, Cockbain AJ, Raza SS. et al. Increased morbidity in overweight and obese liver transplant recipients: a single-center experience of 1325 patients from the United Kingdom. Liver Transpl 2013; 19: 551-562
  • 19 Dick AA, Spitzer AL, Seifert CF. et al. Liver transplantation at the extremes of the body mass index. Liver Transpl 2009; 15: 968-977
  • 20 Pelletier SJ, Schaubel DE, Wei G. et al. Effect of body mass index on the survival benefit of liver transplantation. Liver Transpl 2007; 13: 1678-1683
  • 21 Saab S, Lalezari D, Pruthi P. et al. The impact of obesity on patient survival in liver transplant recipients: a meta-analysis. Liver Int 2015; 35: 164-170
  • 22 Martin P, DiMartini A, Feng S. et al. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology 2014; 59: 1144-1165
  • 23 van Son J, Stam SP, Gomes-Neto AW. et al. Post-transplant obesity impacts long-term survival after liver transplantation. Metabolism 2020; 106: 154204
  • 24 Van Herck J, Verbeek J, van Malenstein H. et al. Liver-Related and Cardiovascular Outcome of Patients Transplanted for Nonalcoholic Fatty Liver Disease: A European Single-Center Study. Transplant Proc 2021; 53: 1674-1681
  • 25 Delacôte C, Favre M, El Amrani M. et al. Morbid obesity increases death and dropout from the liver transplantation waiting list: A prospective cohort study. United European Gastroenterol J 2022; 10: 396-408
  • 26 Carey EJ, Lai JC, Wang CW. et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl 2017; 23: 625-633
  • 27 Vural A, Attaway A, Welch N. et al. Skeletal muscle loss phenotype in cirrhosis: A nationwide analysis of hospitalized patients. Clin Nutr 2020; 39: 3711-3720
  • 28 Dasarathy J, McCullough AJ, Dasarathy S. Sarcopenia in Alcoholic Liver Disease: Clinical and Molecular Advances. Alcohol Clin Exp Res 2017; 41: 1419-1431
  • 29 Bhanji RA, Narayanan P, Allen AM. et al. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology 2017; 66: 2055-2065
  • 30 Tsien C, Shah SN, McCullough AJ. et al. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol 2013; 25: 85-93
  • 31 Bernal W, Martin-Mateos R, Lipcsey M. et al. Aerobic capacity during cardiopulmonary exercise testing and survival with and without liver transplantation for patients with chronic liver disease. Liver Transplantation 2014; 20: 54-62
  • 32 Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J. et al. Inclusion of Sarcopenia Within MELD (MELD-Sarcopenia) and the Prediction of Mortality in Patients With Cirrhosis. Clin Transl Gastroenterol 2015; 6: e102
  • 33 van Vugt JLA, Alferink LJM, Buettner S. et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: A competing risk analysis in a national cohort. J Hepatol 2018; 68: 707-714
  • 34 Kang SH, Jeong WK, Baik SK. et al. Impact of sarcopenia on prognostic value of cirrhosis: going beyond the hepatic venous pressure gradient and MELD score. J Cachexia Sarcopenia Muscle 2018; 9: 860-870
  • 35 Praktiknjo M, Clees C, Pigliacelli A. et al. Sarcopenia Is Associated With Development of Acute-on-Chronic Liver Failure in Decompensated Liver Cirrhosis Receiving Transjugular Intrahepatic Portosystemic Shunt. Clin Transl Gastroenterol 2019; 10: e00025
  • 36 Ebadi M, Bhanji RA, Dunichand-Hoedl AR. et al. Sarcopenia Severity Based on Computed Tomography Image Analysis in Patients with Cirrhosis. Nutrients 2020; 12
  • 37 Tateyama M, Naoe H, Tanaka M. et al. Loss of skeletal muscle mass affects the incidence of minimal hepatic encephalopathy: a case control study. BMC Gastroenterol 2020; 20: 371
  • 38 Welch N, Dasarathy J, Runkana A. et al. Continued muscle loss increases mortality in cirrhosis: Impact of aetiology of liver disease. Liver Int 2020; 40: 1178-1188
  • 39 Zeng X, Shi ZW, Yu JJ. et al. Sarcopenia as a prognostic predictor of liver cirrhosis: a multicentre study in China. J Cachexia Sarcopenia Muscle 2021; 12: 1948-1958
  • 40 Paternostro R, Bardach C, Hofer BS. et al. Prognostic impact of sarcopenia in cirrhotic patients stratified by different severity of portal hypertension. Liver Int 2021; 41: 799-809
  • 41 Dharancy S, Lemyze M, Boleslawski E. et al. Impact of impaired aerobic capacity on liver transplant candidates. Transplantation 2008; 86: 1077-1083
  • 42 Englesbe MJ, Patel SP, He K. et al. Sarcopenia and Mortality after Liver Transplantation. J Am Coll Surg 2010; 211: 271-278
  • 43 DiMartini A, Cruz RJ, Dew MA. et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl 2013; 19: 1172-1180
  • 44 Tsien C, Garber A, Narayanan A. et al. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol 2014; 29: 1250-1257
  • 45 van Vugt JL, Levolger S, de Bruin RW. et al. Systematic Review and Meta-Analysis of the Impact of Computed Tomography-Assessed Skeletal Muscle Mass on Outcome in Patients Awaiting or Undergoing Liver Transplantation. Am J Transplant 2016; 16: 2277-2292
  • 46 Tantai X, Liu Y, Yeo YH. et al. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J Hepatol 2022; 76: 588-599
  • 47 Merli M, Riggio O, Dally L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology 1996; 23: 1041-1046
  • 48 Mourtzakis M, Prado CM, Lieffers JR. et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33: 997-1006
  • 49 Prado CM, Birdsell LA, Baracos VE. The emerging role of computerized tomography in assessing cancer cachexia. Curr Opin Support Palliat Care 2009; 3: 269-275
  • 50 Montano-Loza AJ, Meza-Junco J, Prado CM. et al Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 2012; 10: 166-173 173.e161
  • 51 Rutten IJG, Ubachs J, Kruitwagen R. et al. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J Cachexia Sarcopenia Muscle 2017; 8: 630-638
  • 52 Ebadi M, Wang CW, Lai JC. et al. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J Cachexia Sarcopenia Muscle 2018; 9: 1053-1062
  • 53 Baracos VE. Psoas as a sentinel muscle for sarcopenia: a flawed premise. J Cachexia Sarcopenia Muscle 2017; 8: 527-528
  • 54 Kim S-E, Kim DJ. Sarcopenia as a prognostic indicator of liver cirrhosis. J Cachexia Sarcopenia Muscle 2022; 13: 8-10
  • 55 Nishikawa H, Shiraki M, Hiramatsu A. et al. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res 2016; 46: 951-963
  • 56 Martin L, Birdsell L, Macdonald N. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 2013; 31: 1539-1547
  • 57 Thuluvath PJ, Thuluvath AJ, Savva Y. Karnofsky performance status before and after liver transplantation predicts graft and patient survival. J Hepatol 2018; 69: 818-825
  • 58 Tandon P, Reddy KR, O'Leary JG. et al. A Karnofsky performance status-based score predicts death after hospital discharge in patients with cirrhosis. Hepatology 2017; 65: 217-224
  • 59 Lai JC, Covinsky KE, Dodge JL. et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology 2017; 66: 564-574
  • 60 Kardashian A, Ge J, McCulloch CE. et al. Identifying an Optimal Liver Frailty Index Cutoff to Predict Waitlist Mortality in Liver Transplant Candidates. Hepatology 2021; 73: 1132-1139
  • 61 Lai JC, Dodge JL, Kappus MR. et al. Changes in frailty are associated with waitlist mortality in patients with cirrhosis. J Hepatol 2020; 73: 575-581
  • 62 Lai JC, Segev DL, McCulloch CE. et al. Physical frailty after liver transplantation. Am J Transplant 2018; 18: 1986-1994
  • 63 Lai JC, Rahimi RS, Verna EC. et al. Frailty Associated With Waitlist Mortality Independent of Ascites and Hepatic Encephalopathy in a Multicenter Study. Gastroenterology 2019; 156: 1675-1682
  • 64 Tapper EB, Finkelstein D, Mittleman MA. et al. Standard assessments of frailty are validated predictors of mortality in hospitalized patients with cirrhosis. Hepatology 2015; 62: 584-590
  • 65 Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 2002; 86: 509-516
  • 66 Peres WA, Lento DF, Baluz K. et al. Phase angle as a nutritional evaluation tool in all stages of chronic liver disease. Nutr Hosp 2012; 27: 2072-2078
  • 67 Ruiz-Margáin A, Macías-Rodríguez RU, Duarte-Rojo A. et al. Malnutrition assessed through phase angle and its relation to prognosis in patients with compensated liver cirrhosis: a prospective cohort study. Dig Liver Dis 2015; 47: 309-314
  • 68 Belarmino G, Gonzalez MC, Torrinhas RS. et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World J Hepatol 2017; 9: 401-408
  • 69 Saueressig C, Glasenapp JH, Luft VC. et al. Phase Angle Is an Independent Predictor of 6-Month Mortality in Patients With Decompensated Cirrhosis: A Prospective Cohort Study. Nutr Clin Pract 2020; 35: 1061-1069
  • 70 Ruiz-Margáin A, Xie JJ, Román-Calleja BM. et al. Phase Angle From Bioelectrical Impedance for the Assessment of Sarcopenia in Cirrhosis With or Without Ascites. Clin Gastroenterol Hepatol 2021; 19: 1941-1949.e1942
  • 71 Viertel M, Bock C, Reich M. et al. Performance of CT-based low skeletal muscle index, low mean muscle attenuation, and bioelectric impedance derived low phase angle in the detection of an increased risk of nutrition related mortality. Clin Nutr 2019; 38: 2375-2380
  • 72 Plauth M, Sulz I, Viertel M. et al. Phase Angle Is a Stronger Predictor of Hospital Outcome than Subjective Global Assessment-Results from the Prospective Dessau Hospital Malnutrition Study. Nutrients 2022; 14
  • 73 Stanga Z, Brunner A, Leuenberger M. et al. Nutrition in clinical practice – the refeeding syndrome: illustrative cases and guidelines for prevention and treatment. Eur J Clin Nutr 2008; 62: 687-694
  • 74 Mehanna HM, Moledina J, Travis J. Refeeding syndrome: what it is, and how to prevent and treat it. BMJ 2008; 336: 1495-1498
  • 75 Friedli N, Stanga Z, Culkin A. et al. Management and prevention of refeeding syndrome in medical inpatients: An evidence-based and consensus-supported algorithm. Nutrition 2018; 47: 13-20
  • 76 Reber E, Friedli N, Vasiloglou MF. et al. Management of Refeeding Syndrome in Medical Inpatients. J Clin Med 2019; 8
  • 77 da Silva JSV, Seres DS, Sabino K. et al. ASPEN Consensus Recommendations for Refeeding Syndrome. Nutr Clin Pract 2020; 35: 178-195
  • 78 Friedli N, Baumann J, Hummel R. et al. Refeeding syndrome is associated with increased mortality in malnourished medical inpatients: Secondary analysis of a randomized trial. Medicine (Baltimore) 2020; 99: e18506
  • 79 Aubry E, Aeberhard C, Leuenberger M. et al. Refeeding-Syndrom: Ein konsensusbasierter Algorithmus für stationäre Patienten. Aktuel Ernahrungsmed 2019; 44: 33-42
  • 80 Nutrition support for adults: oral nutrition support, enteral tube feeding and parenteral nutrition. London: National Institute for Health and Care Excellence (NICE); 2017 (Aug)
  • 81 Müller MJ, Böttcher J, Selberg O. et al. Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 1999; 69: 1194-1201
  • 82 Madden AM, Morgan MY. Resting energy expenditure should be measured in patients with cirrhosis, not predicted. Hepatology 1999; 30: 655-664
  • 83 Eslamparast T, Vandermeer B, Raman M. et al. Are Predictive Energy Expenditure Equations Accurate in Cirrhosis?. Nutrients 2019; 11
  • 84 Limon-Miro AT, Jackson CD, Eslamparast T. et al. Predicted estimates of resting energy expenditure have limited clinical utility in patients with cirrhosis. J Hepatol 2022; 77: 98-107
  • 85 Hipskind P, Glass C, Charlton D. et al. Do handheld calorimeters have a role in assessment of nutrition needs in hospitalized patients? A systematic review of literature. Nutr Clin Pract 2011; 26: 426-433
  • 86 Owen OE, Trapp VE, Reichard GA. et al. Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. J Clin Invest 1983; 72: 1821-1832
  • 87 Merli M, Riggio O, Romiti A. et al. Basal energy production rate and substrate use in stable cirrhotic patients. Hepatology 1990; 12: 106-112
  • 88 Schneeweiss B, Graninger W, Ferenci P. et al. Energy metabolism in patients with acute and chronic liver disease. Hepatology 1990; 11: 387-393
  • 89 Hirsch S, de la Maza MP, Gattás V. et al. Nutritional support in alcoholic cirrhotic patients improves host defenses. J Am Coll Nutr 1999; 18: 434-441
  • 90 Glass C, Hipskind P, Cole D. et al. Handheld calorimeter is a valid instrument to quantify resting energy expenditure in hospitalized cirrhotic patients: a prospective study. Nutr Clin Pract 2012; 27: 677-688
  • 91 Lindqvist C, Nordstedt P, Nowak G. et al. Energy expenditure early after liver transplantation: Better measured than predicted. Nutrition 2020; 79-80: 110817
  • 92 Müller MJ, Lautz HU, Plogmann B. et al. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state. Hepatology 1992; 15: 782-794
  • 93 Mathur S, Peng S, Gane EJ. et al. Hypermetabolism predicts reduced transplant-free survival independent of MELD and Child-Pugh scores in liver cirrhosis. Nutrition 2007; 23: 398-403
  • 94 Ferreira LG, Santos LF, Silva TR. et al. Hyper- and hypometabolism are not related to nutritional status of patients on the waiting list for liver transplantation. Clin Nutr 2014; 33: 754-760
  • 95 Selberg O, Böttcher J, Tusch G. et al. Identification of high- and low-risk patients before liver transplantation: a prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology 1997; 25: 652-657
  • 96 Plauth M, Schütz T, Buckendahl DP. et al. Weight gain after transjugular intrahepatic portosystemic shunt is associated with improvement in body composition in malnourished patients with cirrhosis and hypermetabolism. J Hepatol 2004; 40: 228-233
  • 97 Schütz T, Hudjetz H, Roske A-E. et al. Weight gain in long-term survivors of kidney or liver transplantation – Another paradigm of sarcopenic obesity?. Nutrition 2012; 28: 378-383
  • 98 Schneeweiss B, Pammer J, Ratheiser K. et al. Energy metabolism in acute hepatic failure. Gastroenterology 1993; 105: 1515-1521
  • 99 Walsh TS, Wigmore SJ, Hopton P. et al. Energy expenditure in acetaminophen-induced fulminant hepatic failure. Crit Care Med 2000; 28: 649-654
  • 100 John WJ, Phillips R, Ott L. et al. Resting energy expenditure in patients with alcoholic hepatitis. JPEN J Parenter Enteral Nutr 1989; 13: 124-127
  • 101 Campillo B, Bories P, Pornin B. et al. Dépenses énergétiques et utilisation des nutriments chez le cirrhotique à jeun et en repos. Influence de l' hépatite alcoolique et du score de gravité de la maladie. Gastroenterol Clin Biol 1989; 13: 544-550
  • 102 Pierrugues R, Blanc P, Daures JP. et al. Relationship of resting energy expenditure with liver function and nutritional status in patients with alcoholic cirrhosis. Nutrition 1992; 8: 22-25
  • 103 Jhangiani SS, Agarwal N, Holmes R. et al. Energy expenditure in chronic alcoholics with and without liver disease. Am J Clin Nutr 1986; 44: 323-329
  • 104 Levine JA, Harris MM, Morgan MY. Energy expenditure in chronic alcohol abuse. Eur J Clin Invest 2000; 30: 779-786
  • 105 Addolorato G, Capristo E, Caputo F. et al. Nutritional status and body fluid distribution in chronic alcoholics compared with controls. Alcohol Clin Exp Res 1999; 23: 1232-1237
  • 106 Tarantino G, Marra M, Contaldo F. et al. Basal metabolic rate in morbidly obese patients with non-alcoholic fatty liver disease. Clin Invest Med 2008; 31: E24-E29
  • 107 Kotronen A, Seppälä-Lindroos A, Vehkavaara S. et al. Liver fat and lipid oxidation in humans. Liver Int 2009; 29: 1439-1446
  • 108 Müller MJ, Fenk A, Lautz HU. et al. Energy expenditure and substrate metabolism in ethanol-induced liver cirrhosis. Am J Physiol 1991; 260: E338-E344
  • 109 Perseghin G, Mazzaferro V, Benedini S. et al. Resting energy expenditure in diabetic and nondiabetic patients with liver cirrhosis: relation with insulin sensitivity and effect of liver transplantation and immunosuppressive therapy. Am J Clin Nutr 2002; 76: 541-548
  • 110 Verboeket-van de Venne WP, Westerterp KR, van Hoek B. et al. Energy expenditure and substrate metabolism in patients with cirrhosis of the liver: effects of the pattern of food intake. Gut 1995; 36: 110-116
  • 111 Shanbhogue RL, Bistrian BR, Jenkins RL. et al. Resting energy expenditure in patients with end-stage liver disease and in normal population. JPEN J Parenter Enteral Nutr 1987; 11: 305-308
  • 112 Nielsen K, Kondrup J, Martinsen L. et al. Nutritional assessment and adequacy of dietary intake in hospitalized patients with alcoholic liver cirrhosis. Br J Nutr 1993; 69: 665-679
  • 113 Nielsen K, Kondrup J, Martinsen L. et al. Long-term oral refeeding of patients with cirrhosis of the liver. Br J Nutr 1995; 74: 557-567
  • 114 Riggio O, Merli M, Romiti A. et al. Early postprandial energy expenditure and macronutrient use after a mixed meal in cirrhotic patients. JPEN J Parenter Enteral Nutr 1992; 16: 445-450
  • 115 Campillo B, Bories PN, Devanlay M. et al. The thermogenic and metabolic effects of food in liver cirrhosis: consequences on the storage of nutrients and the hormonal counterregulatory response. Metabolism 1992; 41: 476-482
  • 116 DeLissio M, Goodyear LJ, Fuller S. et al. Effects of treadmill exercise on fuel metabolism in hepatic cirrhosis. J Appl Physiol (1985) 1991; 70: 210-215
  • 117 Müller MJ, Dettmer A, Tettenborn M. et al. Metabolic, endocrine, haemodynamic and pulmonary responses to different types of exercise in individuals with normal or reduced liver function. Eur J Appl Physiol Occup Physiol 1996; 74: 246-257
  • 118 Dunn MA, Josbeno DA, Schmotzer AR. et al. The gap between clinically assessed physical performance and objective physical activity in liver transplant candidates. Liver Transpl 2016; 22: 1324-1332
  • 119 Nielsen K, Kondrup J, Martinsen L. et al. Nutritional assessment and adequacy of dietary intake in hospitalized patients with alcoholic liver cirrhosis. Br J Nutr 1993; 69: 665-679
  • 120 Kondrup J, Müller MJ. Energy and protein requirements of patients with chronic liver disease. J Hepatol 1997; 27: 239-247
  • 121 Plank LD, Metzger DJ, McCall JL. et al. Sequential changes in the metabolic response to orthotopic liver transplantation during the first year after surgery. Ann Surg 2001; 234: 245-255
  • 122 Weimann A, Braga M, Carli F. et al. ESPEN guideline: Clinical nutrition in surgery. Clin Nutr 2017; 36: 623-650
  • 123 Plevak DJ, DiCecco SR, Wiesner RH. et al. Nutritional support for liver transplantation: identifying caloric and protein requirements. Mayo Clin Proc 1994; 69: 225-230
  • 124 Weimann A, Kuse ER, Bechstein WO. et al. Perioperative parenteral and enteral nutrition for patients undergoing orthotopic liver transplantation. Results of a questionnaire from 16 European transplant units. Transpl Int 1998; 11: S289-S291
  • 125 [Anonym] EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402
  • 126 Tandon P, Ney M, Irwin I. et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl 2012; 18: 1209-1216
  • 127 Tandon P, Low G, Mourtzakis M. et al. A Model to Identify Sarcopenia in Patients With Cirrhosis. Clin Gastroenterol Hepatol 2016; 14: 1473-1480.e1473
  • 128 Elke G, Hartl WH, Kreymann KG. et al. DGEM-Leitlinie: „Klinische Ernährung in der Intensivmedizin“. Aktuel Ernahrungsmed 2018; 43: 341-408
  • 129 Plank LD, McCall JL, Gane EJ. et al. Pre- and postoperative immunonutrition in patients undergoing liver transplantation: a pilot study of safety and efficacy. Clin Nutr 2005; 24: 288-296
  • 130 Plank LD, Gane EJ, Peng S. et al. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology 2008; 48: 557-566
  • 131 Le Cornu KA, McKiernan FJ, Kapadia SA. et al. A prospective randomized study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. Transplantation 2000; 69: 1364-1369
  • 132 Hiesmayr M, Frantal S, Schindler K. et al. The Patient- And Nutrition-Derived Outcome Risk Assessment Score (PANDORA): Development of a Simple Predictive Risk Score for 30-Day In-Hospital Mortality Based on Demographics, Clinical Observation, and Nutrition. PLoS One 2015; 10: e0127316
  • 133 Hiesmayr M, Schindler K, Pernicka E. et al. Decreased food intake is a risk factor for mortality in hospitalised patients: the NutritionDay survey 2006. Clin Nutr 2009; 28: 484-491
  • 134 Hartl WH, Parhofer KG, Kuppinger D. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES und der AKE. Aktuel Ernahrungsmed 2013; 38: e90-e100
  • 135 Clemmesen JO, Larsen FS, Kondrup J. et al. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 1999; 29: 648-653
  • 136 Bhatia V, Singh R, Acharya SK. Predictive value of arterial ammonia for complications and outcome in acute liver failure. Gut 2006; 55: 98-104
  • 137 Bernal W, Hall C, Karvellas CJ. et al. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 2007; 46: 1844-1852
  • 138 Schmidt LE, Dalhoff K. Serum phosphate is an early predictor of outcome in severe acetaminophen-induced hepatotoxicity. Hepatology 2002; 36: 659-665
  • 139 McLean AE. Hepatic failure in malnutrition. Lancet 1962; 2: 1292-1294
  • 140 Webber BL, Freiman I. The liver in kwashiorkor. A clinical and electron microscopical study. Arch Pathol 1974; 98: 400-408
  • 141 Waterlow JC. Amount and rate of disappearance of liver fat in malnourished infants in Jamaica. Am J Clin Nutr 1975; 28: 1330-1336
  • 142 Badaloo A, Reid M, Soares D. et al. Relation between liver fat content and the rate of VLDL apolipoprotein B-100 synthesis in children with protein-energy malnutrition. Am J Clin Nutr 2005; 81: 1126-1132
  • 143 Manary MJ, Broadhead RL, Yarasheski KE. Whole-body protein kinetics in marasmus and kwashiorkor during acute infection. Am J Clin Nutr 1998; 67: 1205-1209
  • 144 Pantuck EJ, Pantuck CB, Weissman C. et al. Stimulation of oxidative drug metabolism by parenteral refeeding of nutritionally depleted patients. Gastroenterology 1985; 89: 241-245
  • 145 Tranvouez JL, Lerebours E, Chretien P. et al. Hepatic antipyrine metabolism in malnourished patients: influence of the type of malnutrition and course after nutritional rehabilitation. Am J Clin Nutr 1985; 41: 1257-1264
  • 146 Manary MJ, Yarasheski KE, Berger R. et al. Whole-body leucine kinetics and the acute phase response during acute infection in marasmic Malawian children. Pediatr Res 2004; 55: 940-946
  • 147 Reid M, Badaloo A, Forrester T. et al. The acute-phase protein response to infection in edematous and nonedematous protein-energy malnutrition123. Am J Clin Nutr 2002; 76: 1409-1415
  • 148 Risi R, Tuccinardi D, Mariani S. et al. Liver disease in obesity and underweight: the two sides of the coin. A narrative review. Eat Weight Disord 2021; 26: 2097-2107
  • 149 Rosen E, Bakshi N, Watters A. et al. Hepatic Complications of Anorexia Nervosa. Dig Dis Sci 2017; 62: 2977-2981
  • 150 Kheloufi M, Boulanger CM, Durand F. et al. Liver autophagy in anorexia nervosa and acute liver injury. Biomed Res Int 2014; 2014: 701064
  • 151 Addeo P, Cesaretti M, Anty R. et al. Liver transplantation for bariatric surgery-related liver failure: a systematic review of a rare condition. Surg Obes Relat Dis 2019; 15: 1394-1401
  • 152 Khalaj A, Kalantar Motamedi MA, Mousapour P. et al. Protein-Calorie Malnutrition Requiring Revisional Surgery after One-Anastomosis-Mini-Gastric Bypass (OAGB-MGB): Case Series from the Tehran Obesity Treatment Study (TOTS). Obes Surg 2019; 29: 1714-1720
  • 153 Roeb E, Canbay A, Bantel H. et al. Aktualisierte S2k-Leitlinie nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – April 2022 – AWMF-Registernummer: 021–025. Z Gastroenterol 2022; 60: 1346-1421
  • 154 Koletzko B, Goulet O. Fish oil containing intravenous lipid emulsions in parenteral nutrition-associated cholestatic liver disease. Curr Opin Clin Nutr Metab Care 2010; 13: 321-326
  • 155 Żalikowska-Gardocka M, Przybyłkowski A. Review of parenteral nutrition-associated liver disease. Clin Exp Hepatol 2020; 6: 65-73
  • 156 Kelly DA. Intestinal failure-associated liver disease: what do we know today?. Gastroenterology 2006; 130: S70-S77
  • 157 Pironi L, Arends J, Bozzetti F. et al. ESPEN guidelines on chronic intestinal failure in adults. Clin Nutr 2016; 35: 247-307
  • 158 Sondheimer JM, Asturias E, Cadnapaphornchai M. Infection and cholestasis in neonates with intestinal resection and long-term parenteral nutrition. J Pediatr Gastroenterol Nutr 1998; 27: 131-137
  • 159 Bowyer BA, Fleming CR, Ludwig J. et al. Does long-term home parenteral nutrition in adult patients cause chronic liver disease?. JPEN J Parenter Enteral Nutr 1985; 9: 11-17
  • 160 Buchman AL, Naini BV, Spilker B. The Differentiation of Intestinal-Failure-Associated Liver Disease from Nonalcoholic Fatty Liver and Nonalcoholic Steatohepatitis. Semin Liver Dis 2017; 37: 33-44
  • 161 Cavicchi M, Beau P, Crenn P. et al. Prevalence of Liver Disease and Contributing Factors in Patients Receiving Home Parenteral Nutrition for Permanent Intestinal Failure. Ann Intern Med 2000; 132: 525-532
  • 162 Stanko RT, Nathan G, Mendelow H. et al. Development of hepatic cholestasis and fibrosis in patients with massive loss of intestine supported by prolonged parenteral nutrition. Gastroenterology 1987; 92: 197-202
  • 163 Rosseel Z, Cortoos PJ, Jonckheer J. et al. Parenteral Nutrition, Sepsis, Acute Heart Failure and Hepatotoxic Drugs Are Related to Liver Test Disturbances in Critically Ill Patients. Nutrients 2023; 15
  • 164 Jain AK, Stoll B, Burrin DG. et al. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am J Physiol Gastrointest Liver Physiol 2012; 302: G218-G224
  • 165 Pironi L, Joly F, Forbes A. et al. Long-term follow-up of patients on home parenteral nutrition in Europe: implications for intestinal transplantation. Gut 2011; 60: 17-25
  • 166 Tillman EM, Norman JL, Huang EY. et al. Evaluation of parenteral nutrition-associated liver disease in infants with necrotizing enterocolitis before and after the implementation of feeding guidelines. Nutr Clin Pract 2014; 29: 234-237
  • 167 Diamond IR, de Silva NT, Tomlinson GA. et al. The Role of Parenteral Lipids in the Development of Advanced Intestinal Failure–Associated Liver Disease in Infants. JPEN J Parenter Enteral Nutr 2011; 35: 596-602
  • 168 Rangel SJ, Calkins CM, Cowles RA. et al. Parenteral nutrition-associated cholestasis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg 2012; 47: 225-240
  • 169 Bae HJ, Shin SH, Kim EK. et al. Effects of cyclic parenteral nutrition on parenteral nutrition-associated cholestasis in newborns. Asia Pac J Clin Nutr 2019; 28: 42-48
  • 170 Calkins KL, Dunn JC, Shew SB. et al. Pediatric intestinal failure-associated liver disease is reversed with 6 months of intravenous fish oil. JPEN J Parenter Enteral Nutr 2014; 38: 682-692
  • 171 Le HD, de Meijer VE, Zurakowski D. et al. Parenteral fish oil as monotherapy improves lipid profiles in children with parenteral nutrition-associated liver disease. JPEN J Parenter Enteral Nutr 2010; 34: 477-484
  • 172 Nandivada P, Chang MI, Potemkin AK. et al. The natural history of cirrhosis from parenteral nutrition-associated liver disease after resolution of cholestasis with parenteral fish oil therapy. Ann Surg 2015; 261: 172-179
  • 173 Nehra D, Fallon EM, Potemkin AK. et al. A comparison of 2 intravenous lipid emulsions: interim analysis of a randomized controlled trial. JPEN J Parenter Enteral Nutr 2014; 38: 693-701
  • 174 Sant'Anna AM, Altamimi E, Clause RF. et al. Implementation of a multidisciplinary team approach and fish oil emulsion administration in the management of infants with short bowel syndrome and parenteral nutrition-associated liver disease. Can J Gastroenterol 2012; 26: 277-280
  • 175 Pichler J, Simchowitz V, Macdonald S. et al. Comparison of liver function with two new/mixed intravenous lipid emulsions in children with intestinal failure. Eur J Clin Nutr 2014; 68: 1161-1167
  • 176 Tomsits E, Pataki M, Tölgyesi A. et al. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: a randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J Pediatr Gastroenterol Nutr 2010; 51: 514-521
  • 177 Kapoor V, Malviya MN, Soll R. Lipid emulsions for parenterally fed preterm infants. Cochrane Database Syst Rev 2019; 6: Cd013163
  • 178 Casson C, Nguyen V, Nayak P. et al. A Comparison of Smoflipid® and Intralipid® in the Early Management of Infants with Intestinal Failure. J Pediatr Surg 2020; 55: 153-157
  • 179 Lapillonne A, Fidler Mis N, Goulet O. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin Nutr 2018; 37: 2324-2336
  • 180 Pironi L, Corcos O, Forbes A. et al. Intestinal failure in adults: Recommendations from the ESPEN expert groups. Clin Nutr 2018; 37: 1798-1809
  • 181 Lal S, Pironi L, Wanten G. et al. Clinical approach to the management of Intestinal Failure Associated Liver Disease (IFALD) in adults: A position paper from the Home Artificial Nutrition and Chronic Intestinal Failure Special Interest Group of ESPEN. Clin Nutr 2018; 37: 1794-1797
  • 182 Burns DL, Gill BM. Reversal of parenteral nutrition-associated liver disease with a fish oil-based lipid emulsion (Omegaven) in an adult dependent on home parenteral nutrition. JPEN J Parenter Enteral Nutr 2013; 37: 274-280
  • 183 Venecourt-Jackson E, Hill SJ, Walmsley RS. Successful treatment of parenteral nutrition-associated liver disease in an adult by use of a fish oil-based lipid source. Nutrition 2013; 29: 356-358
  • 184 Xu Z, Li Y, Wang J. et al. Effect of omega-3 polyunsaturated fatty acids to reverse biopsy-proven parenteral nutrition-associated liver disease in adults. Clin Nutr 2012; 31: 217-223
  • 185 Pironi L, Colecchia A, Guidetti M. et al. Fish oil-based emulsion for the treatment of parenteral nutrition associated liver disease in an adult patient. eSPEN 2010; 5: e243-e246
  • 186 Klek S, Chambrier C, Singer P. et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid) – a double-blind, randomised, multicentre study in adults. Clin Nutr 2013; 32: 224-231
  • 187 Klek S, Szczepanek K, Scislo L. et al. Intravenous lipid emulsions and liver function in adult chronic intestinal failure patients: Results after 5 y of home parenteral nutrition. Nutrition 2021; 82: 111029
  • 188 Martindale RG, Berlana D, Boullata JI. et al. Summary of Proceedings and Expert Consensus Statements From the International Summit “Lipids in Parenteral Nutrition”. JPEN J Parenter Enteral Nutr 2020; 44: S7-s20
  • 189 Hadem J, Tacke F, Bruns T. et al. Etiologies and outcomes of acute liver failure in Germany. Clin Gastroenterol Hepatol 2012; 10: 664-669.e662
  • 190 Bernal W, Hyyrylainen A, Gera A. et al. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. J Hepatol 2013; 59: 74-80
  • 191 Schütz T, Bechstein WO, Neuhaus P. et al. Clinical practice of nutrition in acute liver failure – a European survey. Clin Nutr 2004; 23: 975-982
  • 192 Rabinowich L, Wendon J, Bernal W. et al. Clinical management of acute liver failure: Results of an international multi-center survey. World J Gastroenterol 2016; 22: 7595-7603
  • 193 Vilstrup H, Iversen J, Tygstrup N. Glucoregulation in acute liver failure. Eur J Clin Invest 1986; 16: 193-197
  • 194 Clemmesen JO, Høy CE, Kondrup J. et al. Splanchnic metabolism of fuel substrates in acute liver failure. J Hepatol 2000; 33: 941-948
  • 195 Ohyanagi HNH, Nishimatsu S, Usami M, Kasahara H. The liver and nutrient metabolism. In Payne-James J, Grimble G, Silk D, eds Artificial nutrition and support in clinical practice London. Edward Arnold; 1995: 59-71
  • 196 Helling G, Wahlin S, Smedberg M. et al. Plasma Glutamine Concentrations in Liver Failure. PLoS One 2016; 11: e0150440
  • 197 Slack AJ, Auzinger G, Willars C. et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int 2014; 34: 42-48
  • 198 Larsen FS, Schmidt LE, Bernsmeier C. et al. High-volume plasma exchange in patients with acute liver failure: An open randomised controlled trial. J Hepatol 2016; 64: 69-78
  • 199 Maiwall R, Sarin SK. Plasma Exchange in Acute and Acute on Chronic Liver Failure. Semin Liver Dis 2021; 41: 476-494
  • 200 Rutherford A, Davern T, Hay JE. et al. Influence of high body mass index on outcome in acute liver failure. Clin Gastroenterol Hepatol 2006; 4: 1544-1549
  • 201 Canbay A, Chen SY, Gieseler RK. et al. Overweight patients are more susceptible for acute liver failure. Hepatogastroenterology 2005; 52: 1516-1520
  • 202 De Caprio C, Alfano A, Senatore I. et al. Severe acute liver damage in anorexia nervosa: two case reports. Nutrition 2006; 22: 572-575
  • 203 Rautou PE, Cazals-Hatem D, Moreau R. et al Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology 2008; 135: 840-848 848.e841-843
  • 204 Plauth M, Schütz T, Pirlich M. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGVS Klinische Ernährung in der Gastroenterologie (Teil 1) – Leber. Aktuel Ernahrungsmed 2014; 39: e1-e42
  • 205 Reintam Blaser A, Starkopf J, Alhazzani W. et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 2017; 43: 380-398
  • 206 O'Grady JG, Schalm SW, Williams R. Acute liver failure: redefining the syndromes. Lancet 1993; 342: 273-275
  • 207 Mayr U, Pfau J, Lukas M. et al. NUTRIC and Modified NUTRIC are Accurate Predictors of Outcome in End-Stage Liver Disease: A Validation in Critically Ill Patients with Liver Cirrhosis. Nutrients 2020; 12
  • 208 Cederholm T, Jensen GL, Correia M. et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle 2019; 10: 207-217
  • 209 Tofteng F, Hauerberg J, Hansen BA. et al. Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2006; 26: 21-27
  • 210 Sekido H, Matsuo K, Takeda K. et al. Impact of early enteral nutrition after liver transplantation for acute hepatic failure: report of four cases. Transplant Proc 2003; 35: 369-371
  • 211 McClave SA, Taylor BE, Martindale RG. et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40: 159-211
  • 212 Mahler H, Pasi A, Kramer JM. et al. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 1997; 336: 1142-1148
  • 213 Schafer DF, Sorrell MF. Power failure, liver failure. N Engl J Med 1997; 336: 1173-1174
  • 214 Kleinberger G. Parenteral nutrition in liver insufficiency. Schweiz Med Wochenschr 1986; 116: 545-549
  • 215 Forbes AWC, Marshall W, Johnson P, Forsey P, Williams R. Nutritional support in fulminant hepatic failure: the safety of lipid solutions. Gut 1987; 28: 1347-1349
  • 216 Mendenhall CL, Anderson S, Weesner RE. et al. Protein-calorie malnutrition associated with alcoholic hepatitis. Veterans Administration Cooperative Study Group on Alcoholic Hepatitis. Am J Med 1984; 76: 211-222
  • 217 Mendenhall CL, Moritz TE, Roselle GA. et al. A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs cooperative study. Hepatology 1993; 17: 564-576
  • 218 Mendenhall CL, Moritz TE, Roselle GA. et al. Protein energy malnutrition in severe alcoholic hepatitis: diagnosis and response to treatment. The VA Cooperative Study Group #275. JPEN J Parenter Enteral Nutr 1995; 19: 258-265
  • 219 Moreno C, Deltenre P, Senterre C. et al. Intensive Enteral Nutrition Is Ineffective for Patients With Severe Alcoholic Hepatitis Treated With Corticosteroids. Gastroenterology 2016; 150: 903-910.e908
  • 220 Kearns PJ, Young H, Garcia G. et al. Accelerated improvement of alcoholic liver disease with enteral nutrition. Gastroenterology 1992; 102: 200-205
  • 221 Sehrawat TS, Liu M, Shah VH. The knowns and unknowns of treatment for alcoholic hepatitis. Lancet Gastroenterol Hepatol 2020; 5: 494-506
  • 222 Fairfield B, Schnabl B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep 2021; 3: 100220
  • 223 Bataller R, Arab JP, Shah VH. Alcohol-Associated Hepatitis. N Engl J Med 2022; 387: 2436-2448
  • 224 Mendenhall C, Bongiovanni G, Goldberg S. et al. VA Cooperative Study on Alcoholic Hepatitis. III: Changes in protein-calorie malnutrition associated with 30 days of hospitalization with and without enteral nutritional therapy. JPEN J Parenter Enteral Nutr 1985; 9: 590-596
  • 225 Lackner C, Spindelboeck W, Haybaeck J. et al. Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease. J Hepatol 2017; 66: 610-618
  • 226 Louvet A, Labreuche J, Artru F. et al. Main drivers of outcome differ between short term and long term in severe alcoholic hepatitis: A prospective study. Hepatology 2017; 66: 1464-1473
  • 227 Degré D, Stauber RE, Englebert G. et al. Long-term outcomes in patients with decompensated alcohol-related liver disease, steatohepatitis and Maddrey&apos;s discriminant function<32. J Hepatol 2020; 72: 636-642
  • 228 Jepsen P, Ott P, Andersen PK. et al. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 2010; 51: 1675-1682
  • 229 Parés A, Caballería J, Bruguera M. et al. Histological course of alcoholic hepatitis: Influence of abstinence, sex and extent of hepatic damage. J Hepatol 1986; 2: 33-42
  • 230 Fernández-Solá J, Junqué A, Estruch R. et al. High alcohol intake as a risk and prognostic factor for community-acquired pneumonia. Arch Intern Med 1995; 155: 1649-1654
  • 231 EASL. Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69: 154-181
  • 232 Crabb DW, Im GY, Szabo G. et al. Diagnosis and Treatment of Alcohol-Associated Liver Diseases: 2019 Practice Guidance From the American Association for the Study of Liver Diseases. Hepatology 2020; 71: 306-333
  • 233 Kiefer F, Batra A, Bischof G. et al. S3-Leitlinie Screening, Diagnose und Behandlung alkoholbezogener Störungen. Sucht 2021; 67: 77-103
  • 234 Kaner EF, Beyer FR, Muirhead C. et al. Effectiveness of brief alcohol interventions in primary care populations. Cochrane Database Syst Rev 2018; 2: Cd004148
  • 235 Bundeszentrale für gesundheitliche Aufklärung. Alkohol? Kenn Dein Limit https://www.kenn-dein-limit.de/alkoholberatung/fachkraefte/aerztliche-kurzintervention/ (Zugriff 20.05.2024)
  • 236 Cabré E, Rodríguez-Iglesias P, Caballería J. et al. Short- and long-term outcome of severe alcohol-induced hepatitis treated with steroids or enteral nutrition: a multicenter randomized trial. Hepatology 2000; 32: 36-42
  • 237 Morgan TR, Moritz TE, Mendenhall CL. et al. Protein consumption and hepatic encephalopathy in alcoholic hepatitis. VA Cooperative Study Group #275. J Am Coll Nutr 1995; 14: 152-158
  • 238 Berger MM, Shenkin A, Schweinlin A. et al. ESPEN micronutrient guideline. Clin Nutr 2022; 41: 1357-1424
  • 239 Halsted CH, Villanueva JA, Devlin AM. et al. Metabolic interactions of alcohol and folate. J Nutr 2002; 132: 2367s-2372s
  • 240 Rabenberg M, Mensink G. Vitamin-D-Status in Deutschland. In: Robert Koch-Institut, Epidemiologie und Gesundheitsberichterstattung. 2016.
  • 241 Anty R, Canivet CM, Patouraux S. et al. Severe Vitamin D Deficiency May be an Additional Cofactor for the Occurrence of Alcoholic Steatohepatitis. Alcohol Clin Exp Res 2015; 39: 1027-1033
  • 242 Trépo E, Ouziel R, Pradat P. et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. J Hepatol 2013; 59: 344-350
  • 243 Potter JJ, Liu X, Koteish A. et al. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human α1 (I) collagen expression and type I collagen formation. Liver Int 2013; 33: 677-686
  • 244 Majumdar SK, Shaw GK, O'Gorman P. et al. Blood vitamin status (B1, B2, B6, folic acid and B12) in patients with alcoholic liver disease. Int J Vitam Nutr Res 1982; 52: 266-271
  • 245 Sanvisens A, Zuluaga P, Pineda M. et al. Folate deficiency in patients seeking treatment of alcohol use disorder. Drug Alcohol Depend 2017; 180: 417-422
  • 246 Sechi G, Serra A. Wernicke&apos;s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 2007; 6: 442-455
  • 247 Shaw S, Gorkin BD, Lieber CS. Effects of chronic alcohol feeding on thiamin status: biochemical and neurological correlates. Am J Clin Nutr 1981; 34: 856-860
  • 248 Wijnia JW. A Clinician&apos;s View of Wernicke-Korsakoff Syndrome. J Clin Med 2022; 11
  • 249 Gibson A, Woodside JV, Young IS. et al. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers-a randomized, crossover intervention study. QJM 2008; 101: 881-887
  • 250 Broz P, Rajdl D, Racek J. et al. Effect of Beer Consumption on Methylation and Redox Metabolism. Physiol Res 2022; 71: 573-582
  • 251 Beulens JW, Sierksma A, Schaafsma G. et al. Kinetics of homocysteine metabolism after moderate alcohol consumption. Alcohol Clin Exp Res 2005; 29: 739-745
  • 252 Cravo ML, Glória LM, Selhub J. et al. Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B-12, and vitamin B-6 status. Am J Clin Nutr 1996; 63: 220-224
  • 253 Blasco C, Caballería J, Deulofeu R. et al. Prevalence and Mechanisms of Hyperhomocysteinemia in Chronic Alcoholics. Alcohol Clin Exp Res 2005; 29: 1044-1048
  • 254 McClain C, Vatsalya V, Cave M. Role of Zinc in the Development/Progression of Alcoholic Liver Disease. Curr Treat Options Gastroenterol 2017; 15: 285-295
  • 255 Iritani S, Kawamura Y, Muraishi N. et al. The useful predictors of zinc deficiency for the management of chronic liver disease. J Gastroenterol 2022; 57: 322-332
  • 256 Singh A, Amin H, Garg R. et al. Increased Prevalence of Obesity and Metabolic Syndrome in Patients with Alcoholic Fatty Liver Disease. Dig Dis Sci 2020; 65: 3341-3349
  • 257 Lu XL, Luo JY, Tao M. et al. Risk factors for alcoholic liver disease in China. World J Gastroenterol 2004; 10: 2423-2426
  • 258 Naveau S, Giraud V, Borotto E. et al. Excess weight risk factor for alcoholic liver disease. Hepatology 1997; 25: 108-111
  • 259 Hart CL, Morrison DS, Batty GD. et al. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. BMJ 2010; 340: c1240
  • 260 Åberg F, Byrne CD, Pirola CJ. et al. Alcohol consumption and metabolic syndrome: Clinical and epidemiological impact on liver disease. J Hepatol 2023; 78: 191-206
  • 261 Moreno C, Langlet P, Hittelet A. et al. Enteral nutrition with or without N-acetylcysteine in the treatment of severe acute alcoholic hepatitis: a randomized multicenter controlled trial. J Hepatol 2010; 53: 1117-1122
  • 262 Whitfield JB, Masson S, Liangpunsakul S. et al. Obesity, Diabetes, Coffee, Tea, and Cannabis Use Alter Risk for Alcohol-Related Cirrhosis in 2 Large Cohorts of High-Risk Drinkers. Am J Gastroenterol 2021; 116: 106-115
  • 263 Tverdal A, Skurtveit S, Selmer R. et al. Coffee and wine consumption is associated with reduced mortality from alcoholic liver disease: follow-up of 219,279 Norwegian men and women aged 30-67 years. Ann Epidemiol 2018; 28: 753-758
  • 264 Kennedy OJ, Roderick P, Buchanan R. et al. Systematic review with meta-analysis: coffee consumption and the risk of cirrhosis. Aliment Pharmacol Ther 2016; 43: 562-574
  • 265 Forrest EH, Atkinson SR, Richardson P. et al. Application of prognostic scores in the STOPAH trial: Discriminant function is no longer the optimal scoring system in alcoholic hepatitis. J Hepatol 2018; 68: 511-518
  • 266 Mendenhall CL, Tosch T, Weesner RE. et al. VA cooperative study on alcoholic hepatitis. II: Prognostic significance of protein-calorie malnutrition. Am J Clin Nutr 1986; 43: 213-218
  • 267 Antar R, Wong P, Ghali P. A meta-analysis of nutritional supplementation for management of hospitalized alcoholic hepatitis. Can J Gastroenterol 2012; 26: 463-467
  • 268 Nasrallah SM, Galambos JT. Aminoacid therapy of alcoholic hepatitis. Lancet 1980; 2: 1276-1277
  • 269 Naveau S, Pelletier G, Poynard T. et al. A randomized clinical trial of supplementary parenteral nutrition in jaundiced alcoholic cirrhotic patients. Hepatology 1986; 6: 270-274
  • 270 Achord JL. A prospective randomized clinical trial of peripheral amino acid-glucose supplementation in acute alcoholic hepatitis. Am J Gastroenterol 1987; 82: 871-875
  • 271 Simon D, Galambos JT. A randomized controlled study of peripheral parenteral nutrition in moderate and severe alcoholic hepatitis. J Hepatol 1988; 7: 200-207
  • 272 Calvey H, Davis M, Williams R. Controlled trial of nutritional supplementation, with and without branched chain amino acid enrichment, in treatment of acute alcoholic hepatitis. J Hepatol 1985; 1: 141-151
  • 273 Bunout D, Aicardi V, Hirsch S. et al. Nutritional support in hospitalized patients with alcoholic liver disease. Eur J Clin Nutr 1989; 43: 615-621
  • 274 Jindal A, Jagdish RK. Sarcopenia: Ammonia metabolism and hepatic encephalopathy. Clin Mol Hepatol 2019; 25: 270-279
  • 275 Fialla AD, Israelsen M, Hamberg O. et al. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int 2015; 35: 2072-2078
  • 276 Elke G, van Zanten AR, Lemieux M. et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 2016; 20: 117
  • 277 Lewis SR, Schofield-Robinson OJ, Alderson P. et al. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst Rev 2018; 6: Cd012276
  • 278 Jung CY, Bae JM. Pathophysiology and protective approaches of gut injury in critical illness. Yeungnam Univ J Med 2021; 38: 27-33
  • 279 Philips CA, Schnabl B, Bajaj JS. Gut Microbiome and Alcohol-associated Liver Disease. J Clin Exp Hepatol 2022; 12: 1349-1359
  • 280 Chassaing B, Compher C, Bonhomme B. et al. Randomized Controlled-Feeding Study of Dietary Emulsifier Carboxymethylcellulose Reveals Detrimental Impacts on the Gut Microbiota and Metabolome. Gastroenterology 2022; 162: 743-756
  • 281 Almutairi R, Basson AR, Wearsh P. et al. Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. Eur J Nutr 2022; 61: 2853-2871
  • 282 Keohane PP, Attrill H, Grimble G. et al. Enteral nutrition in malnourished patients with hepatic cirrhosis and acute encephalopathy. JPEN J Parenter Enteral Nutr 1983; 7: 346-350
  • 283 Diehl AM, Boitnott JK, Herlong HF. et al. Effect of parenteral amino acid supplementation in alcoholic hepatitis. Hepatology 1985; 5: 57-63
  • 284 Naveau S, Pelletier G, Poynard T. et al. A randomized clinical trial of supplementary parenteral nutrition in jaundiced alcoholic cirrhotic patients. Hepatology 1986; 6: 270-274
  • 285 Bonkovsky HL, Fiellin DA, Smith GS. et al A randomized, controlled trial of treatment of alcoholic hepatitis with parenteral nutrition and oxandrolone. I. Short-term effects on liver function. Am J Gastroenterol 1991; a 86: 1200-1208
  • 286 Bonkovsky HL, Singh RH, Jafri IH. et al A randomized, controlled trial of treatment of alcoholic hepatitis with parenteral nutrition and oxandrolone. II. Short-term effects on nitrogen metabolism, metabolic balance, and nutrition. Am J Gastroenterol 1991; b 86: 1209-1218
  • 287 Mezey E, Caballería J, Mitchell MC. et al. Effect of parenteral amino acid supplementation on short-term and long-term outcomes in severe alcoholic hepatitis: a randomized controlled trial. Hepatology 1991; 14: 1090-1096
  • 288 Plauth M, Cabré E, Campillo B. et al. ESPEN Guidelines on Parenteral Nutrition: hepatology. Clin Nutr 2009; 28: 436-444
  • 289 Long MT, Noureddin M, Lim JK. AGA Clinical Practice Update: Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Lean Individuals: Expert Review. Gastroenterology 2022; 163: 764-774.e761
  • 290 Younossi ZM, Golabi P, de Avila L. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol 2019; 71: 793-801
  • 291 Long MT, Zhang X, Xu H. et al. Hepatic Fibrosis Associates With Multiple Cardiometabolic Disease Risk Factors: The Framingham Heart Study. Hepatology 2021; 73: 548-559
  • 292 Simon TG, Roelstraete B, Sharma R. et al. Cancer Risk in Patients With Biopsy-Confirmed Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Hepatology 2021; 74: 2410-2423
  • 293 Shen H, Lipka S, Kumar A. et al. Association between nonalcoholic fatty liver disease and colorectal adenoma: a systemic review and meta-analysis. J Gastrointest Oncol 2014; 5: 440-446
  • 294 Allen AM, Therneau TM, Larson JJ. et al. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study. Hepatology 2018; 67: 1726-1736
  • 295 Francque SM, Marchesini G, Kautz A. et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep 2021; 3: 100322
  • 296 Williams B, Mancia G, Spiering W. et al. Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2018; 36: 2284-2309
  • 297 Schafer S, Kantartzis K, Machann J. et al. Lifestyle intervention in individuals with normal versus impaired glucose tolerance. Eur J Clin Invest 2007; 37: 535-543
  • 298 Thomas EL, Brynes AE, Hamilton G. et al. Effect of nutritional counselling on hepatic, muscle and adipose tissue fat content and distribution in non-alcoholic fatty liver disease. World J Gastroenterol 2006; 12: 5813-5819
  • 299 Houttu V, Csader S, Nieuwdorp M. et al. Dietary Interventions in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front Nutr 2021; 8: 716783
  • 300 Harrison SA, Fecht W, Brunt EM. et al. Orlistat for overweight subjects with nonalcoholic steatohepatitis: A randomized, prospective trial. Hepatology 2009; 49: 80-86
  • 301 Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L. et al Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015; 149: 367-378.e365 quiz e314-365
  • 302 Promrat K, Kleiner DE, Niemeier HM. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010; 51: 121-129
  • 303 Hickman IJ, Jonsson JR, Prins JB. et al. Modest weight loss and physical activity in overweight patients with chronic liver disease results in sustained improvements in alanine aminotransferase, fasting insulin, and quality of life. Gut 2004; 53: 413-419
  • 304 Nobili V, Manco M, Devito R. et al. Lifestyle intervention and antioxidant therapy in children with nonalcoholic fatty liver disease: a randomized, controlled trial. Hepatology 2008; 48: 119-128
  • 305 Panunzi S, Maltese S, Verrastro O. et al. Pioglitazone and bariatric surgery are the most effective treatments for non-alcoholic steatohepatitis: A hierarchical network meta-analysis. Diabetes Obes Metab 2021; 23: 980-990
  • 306 Jirapinyo P, McCarty TR, Dolan RD. et al. Effect of Endoscopic Bariatric and Metabolic Therapies on Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2022; 20: 511-524.e511
  • 307 Pais R, Aron-Wisnewsky J, Bedossa P. et al. Persistence of severe liver fibrosis despite substantial weight loss with bariatric surgery. Hepatology 2022; 76: 456-468
  • 308 Larson-Meyer DE, Newcomer BR, Heilbronn LK. et al. Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity (Silver Spring) 2008; 16: 1355-1362
  • 309 Houghton D, Thoma C, Hallsworth K. et al. Exercise Reduces Liver Lipids and Visceral Adiposity in Patients With Nonalcoholic Steatohepatitis in a Randomized Controlled Trial. Clin Gastroenterol Hepatol 2017; 15: 96-102.e103
  • 310 Sullivan S, Kirk EP, Mittendorfer B. et al. Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology 2012; 55: 1738-1745
  • 311 Haufe S, Engeli S, Kast P. et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 2011; 53: 1504-1514
  • 312 Gerber L, Otgonsuren M, Mishra A. et al. Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: a population-based study. Aliment Pharmacol Ther 2012; 36: 772-781
  • 313 Stewart KE, Haller DL, Sargeant C. et al. Readiness for behaviour change in non-alcoholic fatty liver disease: implications for multidisciplinary care models. Liver Int 2015; 35: 936-943
  • 314 Wong VW, Wong GL, Chan RS. et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol 2018; 69: 1349-1356
  • 315 Zelber-Sagi S, Buch A, Yeshua H. et al. Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol 2014; 20: 4382-4392
  • 316 Simon TG, Kim MN, Luo X. et al. Physical activity compared to adiposity and risk of liver-related mortality: Results from two prospective, nationwide cohorts. J Hepatol 2020; 72: 1062-1069
  • 317 Kim D, Murag S, Cholankeril G. et al. Physical Activity, Measured Objectively, Is Associated With Lower Mortality in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2021; 19: 1240-1247.e1245
  • 318 Zhang HJ, He J, Pan LL. et al. Effects of Moderate and Vigorous Exercise on Nonalcoholic Fatty Liver Disease: A Randomized Clinical Trial. JAMA Intern Med 2016; 176: 1074-1082
  • 319 Hallsworth K, Fattakhova G, Hollingsworth KG. et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 2011; 60: 1278-1283
  • 320 Babu AF, Csader S, Lok J. et al. Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients 2021; 13
  • 321 Parry SA, Hodson L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. Adv Ther 2020; 37: 1381-1406
  • 322 Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 2012; 56: 255-266
  • 323 Orci LA, Gariani K, Oldani G. et al. Exercise-based Interventions for Nonalcoholic Fatty Liver Disease: A Meta-analysis and Meta-regression. Clin Gastroenterol Hepatol 2016; 14: 1398-1411
  • 324 Katsagoni CN, Georgoulis M, Papatheodoridis GV. et al. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism 2017; 68: 119-132
  • 325 Hashida R, Kawaguchi T, Bekki M. et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol 2017; 66: 142-152
  • 326 Shojaee-Moradie F, Cuthbertson DJ, Barrett M. et al. Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance But Not VLDL Production in NAFLD. J Clin Endocrinol Metab 2016; 101: 4219-4228
  • 327 Golabi P, Locklear CT, Austin P. et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: Systematic review. World J Gastroenterol 2016; 22: 6318-6327
  • 328 Wharton S, Lau DCW, Vallis M. et al. Obesity in adults: a clinical practice guideline. CMAJ 2020; 192: E875-E891
  • 329 Tsompanaki E, Thanapirom K, Papatheodoridi M. et al. Systematic Review and Meta-analysis: The Role of Diet in the Development of Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2023; 21: 1462-1474.e1424
  • 330 Lin WY, Wu CH, Chu NF. et al. Efficacy and safety of very-low-calorie diet in Taiwanese: a multicenter randomized, controlled trial. Nutrition 2009; 25: 1129-1136
  • 331 Hohenester S, Christiansen S, Nagel J. et al. Lifestyle intervention for morbid obesity: effects on liver steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 2018; 315: G329-G338
  • 332 Schweinlin A, Ulbrich S, Stauß S. et al. Vergleich einer kommerziell erhältlichen, Formula-basierten, mit Haferballaststoffen angereicherten Ernährungstherapie mit einer isokalorischen diätetischen Therapie ohne Formula zur Therapie der nicht-alkoholischen Fettlebererkrankung (NAFLD) – eine randomisierte kontrollierte Interventionsstudie. Z Gastroenterol 2018; 56: 1247-1256
  • 333 Scragg J, Avery L, Cassidy S. et al. Feasibility of a Very Low Calorie Diet to Achieve a Sustainable 10% Weight Loss in Patients With Nonalcoholic Fatty Liver Disease. Clin Transl Gastroenterol 2020; 11: e00231
  • 334 Lazo M, Solga SF, Horska A. et al. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. Diabetes Care 2010; 33: 2156-2163
  • 335 Elias MC, Parise ER, de Carvalho L. et al. Effect of 6-month nutritional intervention on non-alcoholic fatty liver disease. Nutrition 2010; 26: 1094-1099
  • 336 Browning JD, Baker JA, Rogers T. et al. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr 2011; 93: 1048-1052
  • 337 Ryan MC, Abbasi F, Lamendola C. et al. Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care 2007; 30: 1075-1080
  • 338 Kirk E, Reeds DN, Finck BN. et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 2009; 136: 1552-1560
  • 339 Ahn J, Jun DW, Lee HY. et al. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: Review and meta-analyses. Clin Nutr 2019; 38: 2023-2030
  • 340 Holmer M, Lindqvist C, Petersson S. et al. Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet – a randomised controlled trial. JHEP Rep 2021; 3: 100256
  • 341 Markova M, Pivovarova O, Hornemann S. et al. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology 2017; 152: 571-585.e578
  • 342 Bray GA. Medical consequences of obesity. The Journal of Clinical Endocrinology & Metabolism 2004; 89: 2583-2589
  • 343 Stanhope KL, Schwarz JM, Keim NL. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009; 119: 1322-1334
  • 344 Ouyang X, Cirillo P, Sautin Y. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 2008; 48: 993-999
  • 345 Volynets V, Machann J, Kuper MA. et al. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): a pilot study. Eur J Nutr 2013; 52: 527-535
  • 346 Chiu S, Sievenpiper J, De Souza R. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2014; 68: 416-423
  • 347 Chung M, Ma J, Patel K. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 833-849
  • 348 Johnston RD, Stephenson MC, Crossland H. et al. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 2013; 145: 1016-1025.e1012
  • 349 Simons N, Veeraiah P, Simons P. et al. Effects of fructose restriction on liver steatosis (FRUITLESS); a double-blind randomized controlled trial. Am J Clin Nutr 2021; 113: 391-400
  • 350 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012; 142: 1592-1609
  • 351 Wang RT, Koretz RL, Yee HF. Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med 2003; 115: 554-559
  • 352 Angulo P, Kleiner DE, Dam-Larsen S. et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015; 149: 389-397.e310
  • 353 Barker KB, Palekar NA, Bowers SP. et al. Non-alcoholic steatohepatitis: effect of Roux-en-Y gastric bypass surgery. Am J Gastroenterol 2006; 101: 368-373
  • 354 Zelber-Sagi S, Kessler A, Brazowsky E. et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2006; 4: 639-644
  • 355 Mummadi RR, Kasturi KS, Chennareddygari S. et al. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2008; 6: 1396-1402
  • 356 Koutoukidis DA, Koshiaris C, Henry JA. et al. The effect of the magnitude of weight loss on non-alcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism 2021; 115: 154455
  • 357 Arslanow A, Teutsch M, Walle H. et al. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter. Clin Transl Gastroenterol 2016; 7: e176
  • 358 Johari MI, Yusoff K, Haron J. et al. A Randomised Controlled Trial on the Effectiveness and Adherence of Modified Alternate-day Calorie Restriction in Improving Activity of Non-Alcoholic Fatty Liver Disease. Sci Rep 2019; 9: 11232
  • 359 Cai H, Qin YL, Shi ZY. et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC Gastroenterol 2019; 19: 219
  • 360 Yin C, Li Z, Xiang Y. et al. Effect of Intermittent Fasting on Non-Alcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Front Nutr 2021; 8: 709683
  • 361 Watanabe M, Tozzi R, Risi R. et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev 2020; 21: e13024
  • 362 Luukkonen PK, Dufour S, Lyu K. et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2020; 117: 7347-7354
  • 363 Cunha GM, Guzman G, Correa De Mello LL. et al. Efficacy of a 2-Month Very Low-Calorie Ketogenic Diet (VLCKD) Compared to a Standard Low-Calorie Diet in Reducing Visceral and Liver Fat Accumulation in Patients With Obesity. Front Endocrinol (Lausanne) 2020; 11: 607
  • 364 Gelli C, Tarocchi M, Abenavoli L. et al. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23: 3150-3162
  • 365 Trovato FM, Catalano D, Martines GF. et al. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions. Clin Nutr 2015; 34: 86-88
  • 366 Ryan MC, Itsiopoulos C, Thodis T. et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 2013; 59: 138-143
  • 367 Misciagna G, Del Pilar Diaz M, Caramia DV. et al. Effect of a Low Glycemic Index Mediterranean Diet on Non-Alcoholic Fatty Liver Disease. A Randomized Controlled Clinici Trial. J Nutr Health Aging 2017; 21: 404-412
  • 368 Katsagoni CN, Papatheodoridis GV, Ioannidou P. et al. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: a randomised controlled clinical trial. Br J Nutr 2018; 120: 164-175
  • 369 Properzi C, O'Sullivan TA, Sherriff JL. et al. Ad Libitum Mediterranean and Low-Fat Diets Both Significantly Reduce Hepatic Steatosis: A Randomized Controlled Trial. Hepatology 2018; 68: 1741-1754
  • 370 Aller R, Izaola O, de la Fuente B. et al. Mediterranean diet is associated with liver histology in patients with non alcoholic fatty liver disease. Nutr Hosp 2015; 32: 2518-2524
  • 371 Tzima N, Pitsavos C, Panagiotakos DB. et al. Adherence to the Mediterranean diet moderates the association of aminotransferases with the prevalence of the metabolic syndrome; the ATTICA study. Nutr Metab (Lond) 2009; 6: 30
  • 372 Kontogianni MD, Tileli N, Margariti A. et al. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr 2014; 33: 678-683
  • 373 Katsagoni CN, Georgoulis M, Papatheodoridis GV. et al. Associations Between Lifestyle Characteristics and the Presence of Nonalcoholic Fatty Liver Disease: A Case-Control Study. Metab Syndr Relat Disord 2017; 15: 72-79
  • 374 Velasco N, Contreras A, Grassi B. The Mediterranean diet, hepatic steatosis and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2014; 17: 453-457
  • 375 Abenavoli L, Milic N, Peta V. et al. Alimentary regimen in non-alcoholic fatty liver disease: Mediterranean diet. World J Gastroenterol 2014; 20: 16831-16840
  • 376 Suarez M, Boque N, Del Bas JM. et al. Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017; 9
  • 377 Gepner Y, Shelef I, Schwarzfuchs D. et al. Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools: CENTRAL Magnetic Resonance Imaging Randomized Controlled Trial. Circulation 2018; 137: 1143-1157
  • 378 Ma J, Hennein R, Liu C. et al. Improved Diet Quality Associates With Reduction in Liver Fat, Particularly in Individuals With High Genetic Risk Scores for Nonalcoholic Fatty Liver Disease. Gastroenterology 2018; 155: 107-117
  • 379 Yaskolka Meir A, Rinott E, Tsaban G. et al. Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial. Gut 2021; 70: 2085-2095
  • 380 Rehm J, Taylor B, Mohapatra S. et al. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev 2010; 29: 437-445
  • 381 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67: 328-357
  • 382 Åberg F, Puukka P, Salomaa V. et al. Risks of Light and Moderate Alcohol Use in Fatty Liver Disease: Follow-Up of Population Cohorts. Hepatology 2020; 71: 835-848
  • 383 Chang Y, Cho YK, Kim Y. et al. Nonheavy Drinking and Worsening of Noninvasive Fibrosis Markers in Nonalcoholic Fatty Liver Disease: A Cohort Study. Hepatology 2019; 69: 64-75
  • 384 VanWagner LB, Ning H, Allen NB. et al. Alcohol Use and Cardiovascular Disease Risk in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 153: 1260-1272.e1263
  • 385 Åberg F, Färkkilä M, Männistö V. Interaction Between Alcohol Use and Metabolic Risk Factors for Liver Disease: A Critical Review of Epidemiological Studies. Alcohol Clin Exp Res 2020; 44: 384-403
  • 386 Bhurwal A, Rattan P, Yoshitake S. et al. Inverse Association of Coffee with Liver Cancer Development: An Updated Systematic Review and Meta-analysis. J Gastrointestin Liver Dis 2020; 29: 421-428
  • 387 Hayat U, Siddiqui AA, Okut H. et al. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann Hepatol 2021; 20: 100254
  • 388 Poole R, Kennedy OJ, Roderick P. et al. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 2017; 359: j5024
  • 389 Hasegawa T, Yoneda M, Nakamura K. et al. Plasma transforming growth factor-beta1 level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: a pilot study. Aliment Pharmacol Ther 2001; 15: 1667-1672
  • 390 Harrison SA, Torgerson S, Hayashi P. et al. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol 2003; 98: 2485-2490
  • 391 Kugelmas M, Hill DB, Vivian B. et al. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 2003; 38: 413-419
  • 392 Bugianesi E, Gentilcore E, Manini R. et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol 2005; 100: 1082-1090
  • 393 Dufour JF, Oneta CM, Gonvers JJ. et al. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2006; 4: 1537-1543
  • 394 Yakaryilmaz F, Guliter S, Savas B. et al. Effects of vitamin E treatment on peroxisome proliferator-activated receptor-alpha expression and insulin resistance in patients with non-alcoholic steatohepatitis: results of a pilot study. Intern Med J 2007; 37: 229-235
  • 395 Sanyal AJ, Mofrad PS, Contos MJ. et al. A pilot study of vitamin E versus vitamin E and pioglitazone for the treatment of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2004; 2: 1107-1115
  • 396 Sanyal AJ, Chalasani N, Kowdley KV. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 1675-1685
  • 397 Lavine JE, Schwimmer JB, Van Natta ML. et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 2011; 305: 1659-1668
  • 398 Magosso E, Ansari MA, Gopalan Y. et al. Tocotrienols for normalisation of hepatic echogenic response in nonalcoholic fatty liver: a randomised placebo-controlled clinical trial. Nutr J 2013; 12: 166
  • 399 Hoofnagle JH, Van Natta ML, Kleiner DE. et al. Vitamin E and changes in serum alanine aminotransferase levels in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2013; 38: 134-143
  • 400 Bjelakovic G, Gluud LL, Nikolova D. et al. Meta-analysis: antioxidant supplements for liver diseases – the Cochrane Hepato-Biliary Group. Aliment Pharmacol Ther 2010; 32: 356-367
  • 401 Musso G, Gambino R, Cassader M. et al. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 2010; 52: 79-104
  • 402 Ji HF, Sun Y, Shen L. Effect of vitamin E supplementation on aminotransferase levels in patients with NAFLD, NASH, and CHC: results from a meta-analysis. Nutrition 2014; 30: 986-991
  • 403 Bjelakovic G, Nikolova D, Simonetti RG. et al. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 2004; 364: 1219-1228
  • 404 Miller ER, Pastor-Barriuso R, Dalal D. et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142: 37-46
  • 405 Bjelakovic G, Nikolova D, Gluud LL. et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297: 842-857
  • 406 Klein EA, Thompson IM, Tangen CM. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT. JAMA 2011; 306: 1549-1556
  • 407 Bjelakovic G, Nikolova D, Gluud LL. et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012: Cd007176
  • 408 Lawrence WR, Lim JE, Huang J. et al. A 28-year prospective analysis of serum vitamin E, vitamin E-related genetic variation and risk of prostate cancer. Prostate Cancer Prostatic Dis 2022; 25: 553-560
  • 409 Loh WQ, Youn J, Seow WJ. Vitamin E Intake and Risk of Prostate Cancer: A Meta-Analysis. Nutrients 2022; 15
  • 410 Kilchoer B, Vils A, Minder B. et al. Efficacy of Dietary Supplements to Reduce Liver Fat. Nutrients 2020; 12
  • 411 Chachay VS, Macdonald GA, Martin JH. et al Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12: 2092-2103 e2091-2096
  • 412 Faghihzadeh F, Adibi P, Hekmatdoost A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. Br J Nutr 2015; 114: 796-803
  • 413 Chen S, Zhao X, Ran L. et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis 2015; 47: 226-232
  • 414 Guo H, Zhong R, Liu Y. et al. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition 2014; 30: 198-203
  • 415 Zhang PW, Chen FX, Li D. et al. A CONSORT-compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 2015; 94: e758
  • 416 Farhangi MA, Alipour B, Jafarvand E. et al. Oral coenzyme Q10 supplementation in patients with nonalcoholic fatty liver disease: effects on serum vaspin, chemerin, pentraxin 3, insulin resistance and oxidative stress. Arch Med Res 2014; 45: 589-595
  • 417 Ipsen DH, Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency promote fatty liver disease development?. Nutrients 2014; 6: 5473-5499
  • 418 Guerrerio AL, Colvin RM, Schwartz AK. et al. Choline intake in a large cohort of patients with nonalcoholic fatty liver disease. Am J Clin Nutr 2012; 95: 892-900
  • 419 Imajo K, Fujita K, Yoneda M. et al. Plasma free choline is a novel non-invasive biomarker for early-stage non-alcoholic steatohepatitis: A multi-center validation study. Hepatol Res 2012; 42: 757-766
  • 420 Malaguarnera M, Gargante MP, Russo C. et al. L-carnitine supplementation to diet: a new tool in treatment of nonalcoholic steatohepatitis--a randomized and controlled clinical trial. Am J Gastroenterol 2010; 105: 1338-1345
  • 421 Bae JC, Lee WY, Yoon KH. et al. Improvement of Nonalcoholic Fatty Liver Disease With Carnitine-Orotate Complex in Type 2 Diabetes (CORONA): A Randomized Controlled Trial. Diabetes Care 2015; 38: 1245-1252
  • 422 Fu BC, Hullar MAJ, Randolph TW. et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am J Clin Nutr 2020; 111: 1226-1234
  • 423 Scorletti E, Bhatia L, McCormick KG. et al. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study. Hepatology 2014; 60: 1211-1221
  • 424 Argo CK, Patrie JT, Lackner C. et al. Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. J Hepatol 2015; 62: 190-197
  • 425 Sanyal AJ, Abdelmalek MF, Suzuki A. et al. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 2014; 147: 377-384.e371
  • 426 Parker HM, Cohn JS, O'Connor HT. et al. Effect of Fish Oil Supplementation on Hepatic and Visceral Fat in Overweight Men: A Randomized Controlled Trial. Nutrients 2019; 11
  • 427 Nobili V, Carpino G, Alisi A. et al. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease. PLoS One 2014; 9: e88005
  • 428 Parker HM, Johnson NA, Burdon CA. et al. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol 2012; 56: 944-951
  • 429 de Castro GS, Calder PC. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin Nutr 2018; 37: 37-55
  • 430 Aller R, De Luis DA, Izaola O. et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 2011; 15: 1090-1095
  • 431 Wong VW, Won GL, Chim AM. et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol 2013; 12: 256-262
  • 432 Nabavi S, Rafraf M, Somi MH. et al. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J Dairy Sci 2014; 97: 7386-7393
  • 433 Eslamparast T, Poustchi H, Zamani F. et al. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 2014; 99: 535-542
  • 434 Scorletti E, Afolabi PR, Miles EA. et al. Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158: 1597-1610.e1597
  • 435 Malaguarnera M, Vacante M, Antic T. et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci 2012; 57: 545-553
  • 436 McClave SA, Kushner R, Van Way CW. et al. Nutrition therapy of the severely obese, critically ill patient: summation of conclusions and recommendations. JPEN J Parenter Enteral Nutr 2011; 35: 88s-96s
  • 437 Patton H, Heimbach J, McCullough A. AGA Clinical Practice Update on Bariatric Surgery in Cirrhosis: Expert Review. Clin Gastroenterol Hepatol 2021; 19: 436-445
  • 438 Bower G, Toma T, Harling L. et al. Bariatric Surgery and Non-Alcoholic Fatty Liver Disease: a Systematic Review of Liver Biochemistry and Histology. Obes Surg 2015; 25: 2280-2289
  • 439 Manco M, Mosca A, De Peppo F. et al. The Benefit of Sleeve Gastrectomy in Obese Adolescents on Nonalcoholic Steatohepatitis and Hepatic Fibrosis. J Pediatr 2017; 180: 31-37.e32
  • 440 Esquivel CM, Garcia M, Armando L. et al. Laparoscopic Sleeve Gastrectomy Resolves NAFLD: Another Formal Indication for Bariatric Surgery?. Obes Surg 2018; 28: 4022-4033
  • 441 Baldwin D, Chennakesavalu M, Gangemi A. Systematic review and meta-analysis of Roux-en-Y gastric bypass against laparoscopic sleeve gastrectomy for amelioration of NAFLD using four criteria. Surg Obes Relat Dis 2019; 15: 2123-2130
  • 442 Lee Y, Doumouras AG, Yu J. et al. Complete Resolution of Nonalcoholic Fatty Liver Disease After Bariatric Surgery: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2019; 17: 1040-1060.e1011
  • 443 Mavilia MG, Wakefield D, Karagozian R. Outcomes of Bariatric Surgery in Chronic Liver Disease: a National Inpatient Sample Analysis. Obes Surg 2020; 30: 941-947
  • 444 Lassailly G, Caiazzo R, Ntandja-Wandji LC. et al. Bariatric Surgery Provides Long-term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology 2020; 159: 1290-1301.e1295
  • 445 Aminian A, Al-Kurd A, Wilson R. et al. Association of Bariatric Surgery With Major Adverse Liver and Cardiovascular Outcomes in Patients With Biopsy-Proven Nonalcoholic Steatohepatitis. JAMA 2021; 326: 2031-2042
  • 446 Klebanoff MJ, Corey KE, Chhatwal J. et al. Bariatric surgery for nonalcoholic steatohepatitis: A clinical and cost-effectiveness analysis. Hepatology 2017; 65: 1156-1164
  • 447 Verrastro O, Panunzi S, Castagneto-Gissey L. et al. Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. Lancet 2023; 401: 1786-1797
  • 448 Wolter S, Dupree A, Coelius C. et al. Influence of Liver Disease on Perioperative Outcome After Bariatric Surgery in a Northern German Cohort. Obes Surg 2017; 27: 90-95
  • 449 Mosko JD, Nguyen GC. Increased perioperative mortality following bariatric surgery among patients with cirrhosis. Clin Gastroenterol Hepatol 2011; 9: 897-901
  • 450 Figueiredo FA, Perez RM, Freitas MM. et al. Comparison of three methods of nutritional assessment in liver cirrhosis: subjective global assessment, traditional nutritional parameters, and body composition analysis. J Gastroenterol 2006; 41: 476-482
  • 451 Morgan MY, Madden AM, Jennings G. et al. Two-component models are of limited value for the assessment of body composition in patients with cirrhosis. Am J Clin Nutr 2006; 84: 1151-1162
  • 452 Ballmer PE, Walshe D, McNurlan MA. et al. Albumin synthesis rates in cirrhosis: Correlation with child-turcotte classification. Hepatology 1993; 18: 292-297
  • 453 Ballmer PE, Reichen J, McNurlan MA. et al. Albumin but not fibrinogen synthesis correlates with galactose elimination capacity in patients with cirrhosis of the liver. Hepatology 1996; 24: 53-59
  • 454 Selberg O, Böttcher J, Pirlich M. et al. Clinical significance and correlates of whole body potassium status in patients with liver cirrhosis. Hepatology Research 1999; 16: 36-48
  • 455 Pirlich M, Schütz T, Spachos T. et al. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology 2000; 32: 1208-1215
  • 456 Prijatmoko D, Strauss BJ, Lambert JR. et al. Early detection of protein depletion in alcoholic cirrhosis: role of body composition analysis. Gastroenterology 1993; 105: 1839-1845
  • 457 Peng S, Plank LD, McCall JL. et al. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr 2007; 85: 1257-1266
  • 458 Detsky AS, McLaughlin JR, Baker JP. et al. What is subjective global assessment of nutritional status. ? JPEN J Parenter Enteral Nutr 1987; 11: 8-13
  • 459 Schütz1 T, Plauth2 M Subjective Global Assessment – eine Methode zur Erfassung des Ernährungszustandes. Aktuel Ernaehr Med. 2005 30. 43-48
  • 460 Morgan MY, Madden AM, Soulsby CT. et al. Derivation and validation of a new global method for assessing nutritional status in patients with cirrhosis. Hepatology 2006; 44: 823-835
  • 461 Gunsar F, Raimondo ML, Jones S. et al. Nutritional status and prognosis in cirrhotic patients. Aliment Pharmacol Ther 2006; 24: 563-572
  • 462 Yang W, Guo G, Mao L. et al. Comparison of the GLIM criteria with specific screening tool for diagnosing malnutrition in hospitalized patients with cirrhosis: A descriptive cross-sectional study. JPEN J Parenter Enteral Nutr 2023; 47: 310-321
  • 463 Wang H, Wang S, Li C. et al. Coexistent GLIM-Defined Malnutrition and Sarcopenia Increase the Long-Term Mortality Risk in Hospitalized Patients with Decompensated Cirrhosis. Ann Nutr Metab 2023; 79: 423-433
  • 464 Bannert K, Sautter LF, Wiese ML. et al. Analysis of ESPEN and GLIM algorithms reveals specific drivers for the diagnosis of malnutrition in patients with chronic gastrointestinal diseases. Nutrition 2023; 106: 111887
  • 465 Hirsch S, de la Maza MP, Gattás V. et al. Nutritional support in alcoholic cirrhotic patients improves host defenses. J Am Coll Nutr 1999; 18: 434-441
  • 466 Kondrup J, Nielsen K, Juul A. Effect of long-term refeeding on protein metabolism in patients with cirrhosis of the liver. Br J Nutr 1997; 77: 197-212
  • 467 Smith J, Horowitz J, Henderson JM. et al. Enteral hyperalimentation in undernourished patients with cirrhosis and ascites. Am J Clin Nutr 1982; 35: 56-72
  • 468 Cabre E, Gonzalez-Huix F, Abad-Lacruz A. et al. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. Gastroenterology 1990; 98: 715-720
  • 469 Hirsch S, Bunout D, de la Maza P. et al. Controlled trial on nutrition supplementation in outpatients with symptomatic alcoholic cirrhosis. JPEN J Parenter Enteral Nutr 1993; 17: 119-124
  • 470 Bories PN, Campillo B. One-month regular oral nutrition in alcoholic cirrhotic patients. Changes of nutritional status, hepatic function and serum lipid pattern. Br J Nutr 1994; 72: 937-946
  • 471 Manguso F, D'Ambra G, Menchise A. et al. Effects of an appropriate oral diet on the nutritional status of patients with HCV-related liver cirrhosis: a prospective study. Clin Nutr 2005; 24: 751-759
  • 472 Palmese F, Giannone F, Bolondi I. et al. Low Adherence To Nutritional Recommendations In Patients With Cirrhosis: A Prospective Observational Study. J Gastroenterol Hepatol Res 2019; 8: 2896-2902
  • 473 Georgiou A, Yannakoulia M, Papatheodoridis GV. et al. Assessment of dietary habits and the adequacy of dietary intake of patients with cirrhosis-the KIRRHOS study. Clin Nutr 2021; 40: 3992-3998
  • 474 Sharma P, Gupta C, Kumar A. et al. Nutritional assessment and factors affecting dietary intake in patients with cirrhosis: A single-center observational study. Nutrition 2021; 84: 111099
  • 475 Prijatmoko D, Strauss BJ, Lambert JR. et al. Early detection of protein depletion in alcoholic cirrhosis: role of body composition analysis. Gastroenterology 1993; 105: 1839-1845
  • 476 Alberino F, Gatta A, Amodio P. et al. Nutrition and survival in patients with liver cirrhosis. Nutrition 2001; 17: 445-450
  • 477 Plank LD, Mathur S, Gane EJ. et al. Perioperative immunonutrition in patients undergoing liver transplantation: a randomized double-blind trial. Hepatology 2015; 61: 639-647
  • 478 Lautz HU, Selberg O, Körber J. et al. Protein-calorie malnutrition in liver cirrhosis. Clin Investig 1992; 70: 478-486
  • 479 Carvalho L, Parise ER. Evaluation of nutritional status of nonhospitalized patients with liver cirrhosis. Arq Gastroenterol 2006; 43: 269-274
  • 480 Merli. Nutritional status in cirrhosis. Italian Multicentre Cooperative Project on Nutrition in Liver Cirrhosis. J Hepatol 1994; 21: 317-325
  • 481 Olde Damink SW, Dejong CH, Deutz NE. et al. Upper gastrointestinal bleeding: an ammoniagenic and catabolic event due to the total absence of isoleucine in the haemoglobin molecule. Med Hypotheses 1999; 52: 515-519
  • 482 Nardelli S, Lattanzi B, Merli M. et al. Muscle Alterations Are Associated With Minimal and Overt Hepatic Encephalopathy in Patients With Liver Cirrhosis. Hepatology 2019; 70: 1704-1713
  • 483 Bellafante D, Gioia S, Faccioli J. et al. Old and New Precipitants in Hepatic Encephalopathy: A New Look at a Field in Continuous Evolution. J Clin Med 2023; 12
  • 484 Gerbes A, Labenz J, Appenrodt B. et al. Aktualisierte S2k-Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) „Komplikationen der Leberzirrhose“: AWMF-Nr.: 021-017. Z Gastroenterol 2019; 57: e168-e168
  • 485 Engelmann C, Aehling NF, Schob S. et al. Body fat composition determines outcomes before and after liver transplantation in patients with cirrhosis. Hepatol Commun 2022; 6: 2198-2209
  • 486 Montano-Loza AJ, Angulo P, Meza-Junco J. et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle 2016; 7: 126-135
  • 487 Andersen H, Borre M, Jakobsen J. et al. Decreased muscle strength in patients with alcoholic liver cirrhosis in relation to nutritional status, alcohol abstinence, liver function, and neuropathy. Hepatology 1998; 27: 1200-1206
  • 488 Beyer N, Aadahl M, Strange B. et al. Improved physical performance after orthotopic liver transplantation. Liver Transpl Surg 1999; 5: 301-309
  • 489 Figueiredo F, Dickson ER, Pasha T. et al. Impact of nutritional status on outcomes after liver transplantation. Transplantation 2000; 70: 1347-1352
  • 490 Alvares-da-Silva MR, Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition 2005; 21: 113-117
  • 491 Huisman EJ, Trip EJ, Siersema PD. et al. Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol 2011; 23: 982-989
  • 492 Lai JC, Dodge JL, Sen S. et al. Functional decline in patients with cirrhosis awaiting liver transplantation: Results from the functional assessment in liver transplantation (FrAILT) study. Hepatology 2016; 63: 574-580
  • 493 Ritland S, Petlund CF, Knudsen T. et al. Improvement of Physical Capacity after Long-Term Training in Patients with Chronic Active Hepatitis. Scand J Gastroenterol 1983; 18: 1083-1087
  • 494 Campillo B, Fouet P, Bonnet JC. et al. Submaximal oxygen consumption in liver cirrhosis. Evidence of severe functional aerobic impairment. J Hepatol 1990; 10: 163-167
  • 495 Chen HW, Ferrando A, White MG. et al. Home-Based Physical Activity and Diet Intervention to Improve Physical Function in Advanced Liver Disease: A Randomized Pilot Trial. Dig Dis Sci 2020; 65: 3350-3359
  • 496 Vuille-Lessard É, Berzigotti A. Exercise Interventions for Cirrhosis. Current Treatment Options in Gastroenterology 2022; 20: 336-350
  • 497 Choo YJ, Cho CW, Chang MC. Effects of supervised exercise on aerobic capacity and quality of life in patients with chronic liver disease and patients who underwent liver transplantation: a systematic review and meta-analysis. Int J Rehabil Res 2022; 45: 1-11
  • 498 Tandon P, Ismond KP, Riess K. et al. Exercise in cirrhosis: Translating evidence and experience to practice. J Hepatol 2018; 69: 1164-1177
  • 499 Aamann L, Dam G, Rinnov AR. et al. Physical exercise for people with cirrhosis. Cochrane Database Syst Rev 2018; 12: Cd012678
  • 500 Bellar A, Welch N, Dasarathy S. Exercise and physical activity in cirrhosis: opportunities or perils. J Appl Physiol (1985) 2020; 128: 1547-1567
  • 501 Nielsen HB, Secher NH, Clemmesen O. et al. Maintained cerebral and skeletal muscle oxygenation during maximal exercise in patients with liver cirrhosis. J Hepatol 2005; 43: 266-271
  • 502 Deng N, Mallepally N, Peng FB. et al. Serum testosterone levels and testosterone supplementation in cirrhosis: A systematic review. Liver Int 2021; 41: 2358-2370
  • 503 Sinclair M, Grossmann M, Hoermann R. et al. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J Hepatol 2016; 65: 906-913
  • 504 Leslie WD, Bernstein CN, Leboff MS. AGA technical review on osteoporosis in hepatic disorders. Gastroenterology 2003; 125: 941-966
  • 505 Nakchbandi IA, van der Merwe SW. Current understanding of osteoporosis associated with liver disease. Nat Rev Gastroenterol Hepatol 2009; 6: 660-670
  • 506 Loria I, Albanese C, Giusto M. et al. Bone disorders in patients with chronic liver disease awaiting liver transplantation. Transplant Proc 2010; 42: 1191-1193
  • 507 Alcalde Vargas A, Pascasio Acevedo JM, Gutiérrez Domingo I. et al. Prevalence and characteristics of bone disease in cirrhotic patients under evaluation for liver transplantation. Transplant Proc 2012; 44: 1496-1498
  • 508 Singh S, Taneja S, Tandon P. et al. High Prevalence of Hormonal Changes and Hepatic Osteodystrophy in Frail Patients with Cirrhosis-An Observational Study. J Clin Exp Hepatol 2022; 12: 800-807
  • 509 Zhang X, Yu Z, Yu M. et al. Alcohol consumption and hip fracture risk. Osteoporos Int 2015; 26: 531-542
  • 510 Bang CS, Shin IS, Lee SW. et al. Osteoporosis and bone fractures in alcoholic liver disease: a meta-analysis. World J Gastroenterol 2015; 21: 4038-4047
  • 511 Muhsen IN, AlFreihi O, Abaalkhail F. et al. Bone mineral density loss in patients with cirrhosis. Saudi J Gastroenterol 2018; 24: 342-347
  • 512 Mobarhan SA, Russell RM, Recker RR. et al. Metabolic bone disease in alcoholic cirrhosis: a comparison of the effect of vitamin D2, 25-hydroxyvitamin D, or supportive treatment. Hepatology 1984; 4: 266-273
  • 513 Reed JS, Meredith SC, Nemchausky BA. et al. Bone disease in primary biliary cirrhosis: reversal of osteomalacia with oral 25-hydroxyvitamin D. Gastroenterology 1980; 78: 512-517
  • 514 Kaplan MM, Goldberg MJ, Matloff DS. et al. Effect of 25-hydroxyvitamin D3 on vitamin D metabolites in primary biliary cirrhosis. Gastroenterology 1981; 81: 681-685
  • 515 Herlong HF, Recker RR, Maddrey WC. Bone Disease in Primary Biliary Cirrhosis: Histologic Features and Response to 25-Hydroxyvitamin D. Gastroenterology 1982; 83: 103-108
  • 516 Matloff DS, Kaplan MM, Neer RM. et al. Osteoporosis in primary biliary cirrhosis: effects of 25-hydroxyvitamin D3 treatment. Gastroenterology 1982; 83: 97-102
  • 517 Berg T, Aehling NF, Bruns T. et al. S2k-Leitlinie Lebertransplantation der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV). Januar 2023 – AWMF Registernummer 021-029 https://register.awmf.org Zugriff: 20.05.2024
  • 518 Jan CF, Nfor ON, Huang JY. et al. Exercise might prevent cirrhosis in overweight and obese adults. Liver Int 2018; 38: 515-522
  • 519 Ioannou GN, Weiss NS, Kowdley KV. et al. Is obesity a risk factor for cirrhosis-related death or hospitalization? A population-based cohort study. Gastroenterology 2003; 125: 1053-1059
  • 520 Kok B, Karvellas CJ, Abraldes JG. et al. The impact of obesity in cirrhotic patients with septic shock: A retrospective cohort study. Liver Int 2018; 38: 1230-1241
  • 521 Sundaram V, Jalan R, Ahn JC. et al. Class III obesity is a risk factor for the development of acute-on-chronic liver failure in patients with decompensated cirrhosis. J Hepatol 2018; 69: 617-625
  • 522 Feng H, Wang X, Zhao T. et al. Myopenic obesity determined by visceral fat area strongly predicts long-term mortality in cirrhosis. Clin Nutr 2021; 40: 1983-1989
  • 523 Wang CW, Feng S, Covinsky KE. et al. A Comparison of Muscle Function, Mass, and Quality in Liver Transplant Candidates: Results From the Functional Assessment in Liver Transplantation Study. Transplantation 2016; 100: 1692-1698
  • 524 Berzigotti A, Albillos A, Villanueva C. et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: The SportDiet study. Hepatology 2017; 65: 1293-1305
  • 525 Sakamaki A, Yokoyama K, Koyama K. et al. Obesity and accumulation of subcutaneous adipose tissue are poor prognostic factors in patients with alcoholic liver cirrhosis. PLoS One 2020; 15: e0242582
  • 526 Córdoba J, López-Hellín J, Planas M. et al. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J Hepatol 2004; 41: 38-43
  • 527 Campollo O, Sprengers D, Dam G. et al. Protein tolerance to standard and high protein meals in patients with liver cirrhosis. World J Hepatol 2017; 9: 667-676
  • 528 Horst D, Grace ND, Conn HO. et al. Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: a randomized controlled trial. Hepatology 1984; 4: 279-287
  • 529 Mueller KJ, Crosby LO, Oberlander JL. et al. Estimation of fecal nitrogen in patients with liver disease. JPEN J Parenter Enteral Nutr 1983; 7: 266-269
  • 530 Weber FL, Minco D, Fresard KM. et al. Effects of vegetable diets on nitrogen metabolism in cirrhotic subjects. Gastroenterology 1985; 89: 538-544
  • 531 Gundling F, Schumm-Draeger P, Schepp W. Der hepatogene Diabetes – aktueller Stand der Diagnostik und Therapie. Z Gastroenterol 2009; 47: 436-445
  • 532 García-Compeán D, Orsi E, Kumar R. et al. Clinical implications of diabetes in chronic liver disease: Diagnosis, outcomes and management, current and future perspectives. World J Gastroenterol 2022; 28: 775-793
  • 533 Llibre-Nieto G, Lira A, Vergara M. et al. Micronutrient Deficiencies in Patients with Decompensated Liver Cirrhosis. Nutrients 2021; 13
  • 534 Lange CM, Bojunga J, Ramos-Lopez E. et al. Vitamin D deficiency and a CYP27B1-1260 promoter polymorphism are associated with chronic hepatitis C and poor response to interferon-alfa based therapy. J Hepatol 2011; 54: 887-893
  • 535 Kumar R, Kumar P, Saxena KN. et al. Vitamin D status in patients with cirrhosis of the liver and their relatives-A case control study from North India. Indian J Gastroenterol 2017; 36: 50-55
  • 536 Paternostro R, Wagner D, Reiberger T. et al. Low 25-OH-vitamin D levels reflect hepatic dysfunction and are associated with mortality in patients with liver cirrhosis. Wien Klin Wochenschr 2017; 129: 8-15
  • 537 Kubesch A, Quenstedt L, Saleh M. et al. Vitamin D deficiency is associated with hepatic decompensation and inflammation in patients with liver cirrhosis: A prospective cohort study. PLoS One 2018; 13: e0207162
  • 538 Doi J, Moro A, Fujiki M. et al. Nutrition Support in Liver Transplantation and Postoperative Recovery: The Effects of Vitamin D Level and Vitamin D Supplementation in Liver Transplantation. Nutrients. 2020. 12.
  • 539 Buonomo AR, Zappulo E, Scotto R. et al. Vitamin D deficiency is a risk factor for infections in patients affected by HCV-related liver cirrhosis. Int J Infect Dis 2017; 63: 23-29
  • 540 Buonomo AR, Scotto R, Zappulo E. et al. Severe Vitamin D Deficiency Increases Mortality Among Patients With Liver Cirrhosis Regardless of the Presence of HCC. In Vivo 2019; 33: 177-182
  • 541 Ramadan HK, Makhlouf NA, Mahmoud AA. et al. Role of vitamin D deficiency as a risk factor for infections in cirrhotic patients. Clin Res Hepatol Gastroenterol 2019; 43: 51-57
  • 542 Yousif MM, Sadek A, Farrag HA. et al. Associated vitamin D deficiency is a risk factor for the complication of HCV-related liver cirrhosis including hepatic encephalopathy and spontaneous bacterial peritonitis. Intern Emerg Med 2019; 14: 753-761
  • 543 Bjelakovic G, Nikolova D, Bjelakovic M. et al. Vitamin D supplementation for chronic liver diseases in adults. Cochrane Database Syst Rev 2017; 11: Cd011564
  • 544 S3- Leitlinie der DVO: Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und bei Männern ab dem 50. Lebensjahr. September 2023 – AWMF-Register-Nr.: 183/001 https://register.awmf.org Zugriff 20.05.2024
  • 545 Lieber CS. Alcohol, liver, and nutrition. J Am Coll Nutr 1991; 10: 602-632
  • 546 Lindor KD. Management of osteopenia of liver disease with special emphasis on primary biliary cirrhosis. Semin Liver Dis 1993; 13: 367-373
  • 547 Crippin JS, Jorgensen RA, Dickson ER. et al. Hepatic osteodystrophy in primary biliary cirrhosis: effects of medical treatment. Am J Gastroenterol 1994; 89: 47-50
  • 548 Halsted JA, Hackley B, Rudzki C. et al. Plasma zinc concentration in liver diseases. Comparison with normal controls and certain other chronic diseases. Gastroenterology 1968; 54: 1098-1105
  • 549 Aggett PJ. Severe Zinc Deficiency. In: Mills CF, Hrsg. Zinc in Human Biology. London: Springer London; 1989: 259-279
  • 550 Barry M, Keeling PW, Feely J. Tissue zinc status and drug elimination in patients with chronic liver disease. Clin Sci (Lond) 1990; 78: 547-549
  • 551 Thuluvath PJ, Triger DR. Selenium in chronic liver disease. J Hepatol 1992; 14: 176-182
  • 552 Yang W, Wang X, Yu Z. et al. Low Levels of Serum Zinc Associate with Malnutrition Risk Assessed by the Royal Free Hospital-Nutritional Prioritizing Tool in Cirrhosis. Biol Trace Elem Res 2022; 200: 4289-4296
  • 553 Marchesini G, Fabbri A, Bianchi G. et al. Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology 1996; 23: 1084-1092
  • 554 Takuma Y, Nouso K, Makino Y. et al. Clinical trial: oral zinc in hepatic encephalopathy. Aliment Pharmacol Ther 2010; 32: 1080-1090
  • 555 Katayama K, Saito M, Kawaguchi T. et al. Effect of zinc on liver cirrhosis with hyperammonemia: a preliminary randomized, placebo-controlled double-blind trial. Nutrition 2014; 30: 1409-1414
  • 556 Grüngreiff K, Abicht K, Kluge M. et al. Clinical studies on zinc in chronic liver diseases. Z Gastroenterol 1988; 26: 409-415
  • 557 Van der Rijt CC, Schalm SW, Schat H. et al. Overt hepatic encephalopathy precipitated by zinc deficiency. Gastroenterology 1991; 100: 1114-1118
  • 558 Reding P, Duchateau J, Bataille C. Oral zinc supplementation improves hepatic encephalopathy. Results of a randomised controlled trial. Lancet 1984; 2: 493-495
  • 559 Riggio O, Ariosto F, Merli M. et al. Short-term oral zinc supplementation does not improve chronic hepatic encephalopathy. Results of a double-blind crossover trial. Dig Dis Sci 1991; 36: 1204-1208
  • 560 Bresci G, Parisi G, Banti S. Management of hepatic encephalopathy with oral zinc supplementation: a long-term treatment. Eur J Med 1993; 2: 414-416
  • 561 Chavez-Tapia NC, Cesar-Arce A, Barrientos-Gutiérrez T. et al. A systematic review and meta-analysis of the use of oral zinc in the treatment of hepatic encephalopathy. Nutr J 2013; 12: 74
  • 562 Shen YC, Chang YH, Fang CJ. et al. Zinc supplementation in patients with cirrhosis and hepatic encephalopathy: a systematic review and meta-analysis. Nutr J 2019; 18: 34
  • 563 Diglio DC, Fernandes SA, Stein J. et al. Role of zinc supplementation in the management of chronic liver diseases: A systematic review and meta-analysis. Ann Hepatol 2020; 19: 190-196
  • 564 Bloom A, Bloom S, Silva H. et al. Zinc supplementation and its benefits in the management of chronic liver disease: An in-depth literature review. Ann Hepatol 2021; 25: 100549
  • 565 Weismann K, Christensen E, Dreyer V. Zinc supplementation in alcoholic cirrhosis. A double-blind clinical trial. Acta Med Scand 1979; 205: 361-366
  • 566 Garrett-Laster M, Russell RM, Jacques PF. Impairment of taste and olfaction in patients with cirrhosis: the role of vitamin A. Hum Nutr Clin Nutr 1984; 38: 203-214
  • 567 Iwasa M, Iwata K, Hara N. et al. Nutrition therapy using a multidisciplinary team improves survival rates in patients with liver cirrhosis. Nutrition 2013; 29: 1418-1421
  • 568 Ney M, Vandermeer B, van Zanten SJ. et al. Meta-analysis: oral or enteral nutritional supplementation in cirrhosis. Aliment Pharmacol Ther 2013; 37: 672-679
  • 569 Chang Y, Liu QY, Zhang Q. et al. Role of nutritional status and nutritional support in outcome of hepatitis B virus-associated acute-on-chronic liver failure. World J Gastroenterol 2020; 26: 4288-4301
  • 570 Plauth M, Merli M, Kondrup J. et al. ESPEN guidelines for nutrition in liver disease and transplantation. Clin Nutr 1997; 16: 43-55
  • 571 Trotter JF, Suhocki PV, Rockey DC. Transjugular intrahepatic portosystemic shunt (TIPS) in patients with refractory ascites: effect on body weight and Child-Pugh score. Am J Gastroenterol 1998; 93: 1891-1894
  • 572 Allard JP, Chau J, Sandokji K. et al. Effects of ascites resolution after successful TIPS on nutrition in cirrhotic patients with refractory ascites. Am J Gastroenterol 2001; 96: 2442-2447
  • 573 Montomoli J, Holland-Fischer P, Bianchi G. et al. Body composition changes after transjugular intrahepatic portosystemic shunt in patients with cirrhosis. World J Gastroenterol 2010; 16: 348-353
  • 574 Thomsen KL, Sandahl TD, Holland-Fischer P. et al. Changes in adipokines after transjugular intrahepatic porto-systemic shunt indicate an anabolic shift in metabolism. Clin Nutr 2012; 31: 940-945
  • 575 Gioia S, Merli M, Nardelli S. et al. The modification of quantity and quality of muscle mass improves the cognitive impairment after TIPS. Liver Int 2019; 39: 871-877
  • 576 Benmassaoud A, Roccarina D, Arico F. et al. Sarcopenia Does Not Worsen Survival in Patients With Cirrhosis Undergoing Transjugular Intrahepatic Portosystemic Shunt for Refractory Ascites. Am J Gastroenterol 2020; 115: 1911-1914
  • 577 Pang N, Zhao C, Li J. et al. Body mass index changes after transjugular intrahepatic portosystemic shunt in individuals with cirrhosis. Nutrition 2021; 84: 111095
  • 578 Campillo B, Bories PN, Pornin B. et al. Influence of liver failure, ascites, and energy expenditure on the response to oral nutrition in alcoholic liver cirrhosis. Nutrition 1997; 13: 613-621
  • 579 Norman K, Kirchner H, Freudenreich M. et al. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease--a randomized controlled trial. Clin Nutr 2008; 27: 48-56
  • 580 Bajaj JS, Idilman R, Mabudian L. et al. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology 2018; 68: 234-247
  • 581 Hung TH, Tseng CW, Tsai CC. et al. Prognosis of hypoglycemia episode in cirrhotic patients during hospitalization. BMC Gastroenterol 2021; 21: 319
  • 582 Swart GR, Zillikens MC, van Vuure JK. et al. Effect of a late evening meal on nitrogen balance in patients with cirrhosis of the liver. BMJ 1989; 299: 1202-1203
  • 583 Zillikens MC, van den Berg JW, Wattimena JL. et al. Nocturnal oral glucose supplementation. The effects on protein metabolism in cirrhotic patients and in healthy controls. J Hepatol 1993; 17: 377-383
  • 584 Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol 2012; 27: 430-441
  • 585 Hou W, Lv Z, Yang J. et al. Long-Term Carbohydrate-Containing Late-Evening Snack Significantly Improves the Ratio of Branched Chain Amino Acids to Aromatic Amino Acids in Adults with Liver Cirrhosis due to Hepatitis B. Biomed Res Int 2021; 2021: 1074565
  • 586 Gu XB, Yang XJ, Zhu HY. et al. Effect of a diet with unrestricted sodium on ascites in patients with hepatic cirrhosis. Gut Liver 2012; 6: 355-361
  • 587 Sorrentino P, Castaldo G, Tarantino L. et al. Preservation of nutritional-status in patients with refractory ascites due to hepatic cirrhosis who are undergoing repeated paracentesis. J Gastroenterol Hepatol 2012; 27: 813-822
  • 588 Morando F, Rosi S, Gola E. et al. Adherence to a moderate sodium restriction diet in outpatients with cirrhosis and ascites: a real-life cross-sectional study. Liver Int 2015; 35: 1508-1515
  • 589 Amodio P, Caregaro L, Pattenò E. et al. Vegetarian diets in hepatic encephalopathy: facts or fantasies?. Dig Liver Dis 2001; 33: 492-500
  • 590 Merli M, Riggio O. Dietary and nutritional indications in hepatic encephalopathy. Metab Brain Dis 2009; 24: 211-221
  • 591 Uribe M, Márquez MA, Garcia Ramos G. et al. Treatment of chronic portal--systemic encephalopathy with vegetable and animal protein diets. A controlled crossover study. Dig Dis Sci 1982; 27: 1109-1116
  • 592 Shaw S, Worner TM, Lieber CS. Comparison of animal and vegetable protein sources in the dietary management of hepatic encephalopathy. Am J Clin Nutr 1983; 38: 59-63
  • 593 Keshavarzian A, Meek J, Sutton C. et al. Dietary protein supplementation from vegetable sources in the management of chronic portal systemic encephalopathy. Am J Gastroenterol 1984; 79: 945-949
  • 594 Uribe M, Dibildox M, Malpica S. et al. Beneficial effect of vegetable protein diet supplemented with psyllium plantago in patients with hepatic encephalopathy and diabetes mellitus. Gastroenterology 1985; 88: 901-907
  • 595 Bianchi GP, Marchesini G, Fabbri A. et al. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J Intern Med 1993; 233: 385-392
  • 596 Gheorghe L, Iacob R, Vădan R. et al. Improvement of hepatic encephalopathy using a modified high-calorie high-protein diet. Rom J Gastroenterol 2005; 14: 231-238
  • 597 Maharshi S, Sharma BC, Sachdeva S. et al Efficacy of Nutritional Therapy for Patients With Cirrhosis and Minimal Hepatic Encephalopathy in a Randomized Trial. Clin Gastroenterol Hepatol 2016; 14: 454-460.e453 quiz e433
  • 598 EASL. Clinical Practice Guidelines on the management of hepatic encephalopathy. J Hepatol 2022; 77: 807-824
  • 599 Liu Q, Duan ZP, Ha DK. et al. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004; 39: 1441-1449
  • 600 McGee RG, Bakens A, Wiley K. et al. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst Rev 2011; Cd008716
  • 601 Marlicz W, Wunsch E, Mydlowska M. et al. The effect of short term treatment with probiotic VSL#3 on various clinical and biochemical parameters in patients with liver cirrhosis. J Physiol Pharmacol 2016; 67: 867-877
  • 602 Cao Q, Yu CB, Yang SG. et al. Effect of probiotic treatment on cirrhotic patients with minimal hepatic encephalopathy: A meta-analysis. Hepatobiliary Pancreat Dis Int 2018; 17: 9-16
  • 603 Dalal R, McGee RG, Riordan SM. et al. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst Rev 2017; 2: Cd008716
  • 604 Yoshida T, Muto Y, Moriwaki H. et al. Effect of long-term oral supplementation with branched-chain amino acid granules on the prognosis of liver cirrhosis. Gastroenterol Jpn 1989; 24: 692-698
  • 605 Marchesini G, Bianchi G, Merli M. et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology 2003; 124: 1792-1801
  • 606 Muto Y, Sato S, Watanabe A. et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol 2005; 3: 705-713
  • 607 Park JG, Tak WY, Park SY. et al. Effects of branched-chain amino acids (BCAAs) on the progression of advanced liver disease: A Korean nationwide, multicenter, retrospective, observational, cohort study. Medicine (Baltimore) 2017; 96: e6580
  • 608 Park JG, Tak WY, Park SY. et al. Effects of Branched-Chain Amino Acid (BCAA) Supplementation on the Progression of Advanced Liver Disease: A Korean Nationwide, Multicenter, Prospective, Observational, Cohort Study. Nutrients 2020; 12
  • 609 Egberts EH, Schomerus H, Hamster W. et al. Branched chain amino acids in the treatment of latent portosystemic encephalopathy. A double-blind placebo-controlled crossover study. Gastroenterology 1985; 88: 887-895
  • 610 Marchesini G, Dioguardi FS, Bianchi GP. et al. Long-term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J Hepatol 1990; 11: 92-101
  • 611 Plauth M, Egberts EH, Hamster W. et al. Long-term treatment of latent portosystemic encephalopathy with branched-chain amino acids. A double-blind placebo-controlled crossover study. J Hepatol 1993; 17: 308-314
  • 612 Les I, Doval E, García-Martínez R. et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am J Gastroenterol 2011; 106: 1081-1088
  • 613 Hanai T, Shiraki M, Nishimura K. et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015; 31: 193-199
  • 614 Ismaiel A, Bucsa C, Farcas A. et al. Effects of Branched-Chain Amino Acids on Parameters Evaluating Sarcopenia in Liver Cirrhosis: Systematic Review and Meta-Analysis. Front Nutr 2022; 9: 749969
  • 615 Konstantis G, Pourzitaki C, Chourdakis M. et al. Efficacy of branched chain amino acids supplementation in liver cirrhosis: A systematic review and meta-analysis. Clin Nutr 2022; 41: 1171-1190
  • 616 Gluud LL, Dam G, Les I. et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 2017; 5: Cd001939
  • 617 Als-Nielsen B, Koretz RL, Kjaergard LL. et al. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst Rev 2003; Cd001939
  • 618 Plauth M, Schütz T. Branched-chain amino acids in liver disease: new aspects of long known phenomena. Curr Opin Clin Nutr Metab Care 2011; 14: 61-66
  • 619 Skladany L, Vnencakova J, Laffers L. et al. Adherence to Oral Nutritional Supplements After Being Discharged from the Hospital is Low but Improves Outcome in Patients with Advanced Chronic Liver Disease. Patient Prefer Adherence 2020; 14: 2559-2572
  • 620 Lo GH, Lin CW, Hsu YC. A controlled trial of early versus delayed feeding following ligation in the control of acute esophageal variceal bleeding. J Chin Med Assoc 2015; 78: 642-647
  • 621 Goda T, Mokhtar A, Anwar R. et al. Effect of early versus delayed feeding following emergency endoscopic therapy for acute esophageal variceal bleeding on short-term outcomes. Egypt J Intern Med 2018; 30: 110-114
  • 622 Sidhu SS, Goyal O, Singh S. et al. Early feeding after esophageal variceal band ligation in cirrhotics is safe: Randomized controlled trial. Dig Endosc 2019; 31: 646-652
  • 623 Plauth M, Cabré E, Riggio O. et al. ESPEN Guidelines on Enteral Nutrition: Liver disease. Clin Nutr 2006; 25: 285-294
  • 624 Lattanzi B, Bruni A, Di Cola S. et al. The Effects of 12-Week Beta-Hydroxy-Beta-Methylbutyrate Supplementation in Patients with Liver Cirrhosis: Results from a Randomized Controlled Single-Blind Pilot Study. Nutrients 2021; 13
  • 625 Espina S, París A, Gonzalez-Irazabal Y. et al. Randomized Clinical Trial: Effects of β-Hydroxy-β-Methylbutyrate (HMB)-Enriched vs. HMB-Free Oral Nutritional Supplementation in Malnourished Cirrhotic Patients. Nutrients 2022; 14: 2344
  • 626 Davidson HI, Richardson R, Sutherland D. et al. Macronutrient preference, dietary intake, and substrate oxidation among stable cirrhotic patients. Hepatology 1999; 29: 1380-1386
  • 627 Calvey H, Davis M, Williams R. Prospective study of nasogastric feeding via East Grinstead or Viomedex tubes compared with oral dietary supplementation in patients with cirrhosis. Clin Nutr 1984; 3: 63-66
  • 628 de Lédinghen V, Beau P, Mannant PR. et al. Early feeding or enteral nutrition in patients with cirrhosis after bleeding from esophageal varices? A randomized controlled study. Dig Dis Sci 1997; 42: 536-541
  • 629 Crippin JS. Is tube feeding an option in patients with liver disease?. Nutr Clin Pract 2006; 21: 296-298
  • 630 Tai M-LS, Razlan H, Goh K-L. et al. Short term nasogastric versus oral feeding in hospitalised patients with advanced cirrhosis: A randomised trial. eSPEN 2011; 6: e242-e247
  • 631 Bager P, Olesen L, Baltzer RL. et al. Equal efficacy of gastric and jejunal tube feeding in liver cirrhosis and/or alcoholic hepatitis: a randomised controlled study. Br J Nurs 2020; 29: 1148-1154
  • 632 Wahren J, Denis J, Desurmont P. et al. Is intravenous administration of branched chain amino acids effective in the treatment of hepatic encephalopathy? A multicenter study. Hepatology 1983; 3: 475-480
  • 633 Michel H, Bories P, Aubin JP. et al. Treatment of acute hepatic encephalopathy in cirrhotics with a branched-chain amino acids enriched versus a conventional amino acids mixture. A controlled study of 70 patients. Liver 1985; 5: 282-289
  • 634 Holm E, Leweling H, Saeger HD. et al. Exogenous lipids as a caloric support in hepatic failure. Francavilla, A , et al. (Ed) Serono Symposia Publications From Raven Press Vol 43, Liver and Hormones. New York: Raven Press; 1987: 125-144
  • 635 Müller MJ, Rieger A, Willmann O. et al. Metabolic responses to lipid infusions in patients with liver cirrhosis. Clin Nutr 1992; 11: 193-206
  • 636 Druml W, Fischer M, Pidlich J. et al. Fat elimination in chronic hepatic failure: long-chain vs medium-chain triglycerides. Am J Clin Nutr 1995; 61: 812-817
  • 637 Singer P, Blaser AR, Berger MM. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019; 38: 48-79
  • 638 Fischer JE, Rosen HM, Ebeid AM. et al. The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery 1976; 80: 77-91
  • 639 Holm E, Striebel JP, Meisinger E. et al. Aminosäurengemische zur parenteralen Ernährung bei Leberinsuffizienz. Infusionstherapie 1978; 5: 274-292
  • 640 Freund HR, Dienstag JL, Lehrich J. et al. Infusion of branched-chain enriched amino acid solution in patients with hepatic encephalopathy. Ann Surg 1982; 196: 209-220
  • 641 Rossi-Fanelli F, Riggio O, Cangiano C. et al. Branched-chain amino acids vs lactulose in the treatment of hepatic coma: a controlled study. Dig Dis Sci 1982; 27: 929-935
  • 642 Cerra FB, Cheung NK, Fischer JE. et al. Disease-specific amino acid infusion (F080) in hepatic encephalopathy: a prospective, randomized, double-blind, controlled trial. JPEN J Parenter Enteral Nutr 1985; 9: 288-295
  • 643 Fiaccadori F, Ghinelli F, Pedretti G. et al. Branched Chain Amino Acid Enriched Solutions in the Treatment of Hepatic Encephalopathy: A Controlled Trial. In: Capocaccia L, Fischer JE, Rossi-Fanelli F, Hrsg. Hepatic Encephalopathy in Chronic Liver Failure. Boston, MA: Springer US; 1984: 323-333
  • 644 Strauss E. Treatment of hepatic encephalopathy: a randomized clinical trial comparing branched chain enriched amino acid solution to oral neomycin. Nutr Supp Serv 1986; 6: 18-21
  • 645 Vilstrup H, Gluud C, Hardt F. et al. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis. J Hepatol 1990; 10: 291-296
  • 646 Naylor CD, O'Rourke K, Detsky AS. et al. Parenteral nutrition with branched-chain amino acids in hepatic encephalopathy. A meta-analysis. Gastroenterology 1989; 97: 1033-1042
  • 647 Afridi MAR, Ahmad A, Ali Z. et al. Comparative Study of Branched Chain Amino Acids Infusion with Conventional treatment in patients with Hepatic Encephalopathy due to Liver Cirrhosis. Khyber Medical University Journal 2014; 6: 163-166
  • 648 Olde Damink SW, Jalan R, Deutz NE. et al. Isoleucine infusion during &quot;simulated&quot; upper gastrointestinal bleeding improves liver and muscle protein synthesis in cirrhotic patients. Hepatology 2007; 45: 560-568
  • 649 Olde Damink SW, Jalan R, Deutz NE. et al. Protein synthesis is severely diminished following a simulated upper GI bleed in patients with cirrhosis. J Hepatol 2008; 49: 726-731
  • 650 Garrison RN, Cryer HM, Howard DA. et al. Clarification of risk factors for abdominal operations in patients with hepatic cirrhosis. Ann Surg 1984; 199: 648-655
  • 651 Merli M, Nicolini G, Angeloni S. et al. Malnutrition is a risk factor in cirrhotic patients undergoing surgery. Nutrition 2002; 18: 978-986
  • 652 Shaw BW, Wood RP, Gordon RD. et al. Influence of selected patient variables and operative blood loss on six-month survival following liver transplantation. Semin Liver Dis 1985; 5: 385-393
  • 653 Moukarzel AA, Najm I, Vargas J. et al. Effect of nutritional status on outcome of orthotopic liver transplantation in pediatric patients. Transplant Proc 1990; 22: 1560-1563
  • 654 Shepherd RW, Chin SE, Cleghorn GJ. et al. Malnutrition in children with chronic liver disease accepted for liver transplantation: clinical profile and effect on outcome. J Paediatr Child Health 1991; 27: 295-299
  • 655 Pikul J, Sharpe MD, Lowndes R. et al. Degree of preoperative malnutrition is predictive of postoperative morbidity and mortality in liver transplant recipients. Transplantation 1994; 57: 469-472
  • 656 Harrison J, McKiernan J, Neuberger JM. A prospective study on the effect of recipient nutritional status on outcome in liver transplantation. Transpl Int 1997; 10: 369-374
  • 657 Bilbao I, Armadans L, Lazaro J. et al. Predictive factors for early mortality following liver transplantation. Clin Transplant 2003; 17: 401-411
  • 658 Merli M, Giusto M, Gentili F. et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int 2010; 30: 208-214
  • 659 Kalafateli M, Mantzoukis K, Choi Yau Y. et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. J Cachexia Sarcopenia Muscle 2017; 8: 113-121
  • 660 Chapman B, Goh SK, Parker F. et al. Malnutrition and low muscle strength are independent predictors of clinical outcomes and healthcare costs after liver transplant. Clin Nutr ESPEN 2022; 48: 210-219
  • 661 Dasarathy S. Posttransplant sarcopenia: an underrecognized early consequence of liver transplantation. Dig Dis Sci 2013; 58: 3103-3111
  • 662 Durand F, Buyse S, Francoz C. et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol 2014; 60: 1151-1157
  • 663 Montano-Loza AJ, Meza-Junco J, Baracos VE. et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl 2014; 20: 640-648
  • 664 Yadav A, Chang YH, Carpenter S. et al. Relationship between sarcopenia, six-minute walk distance and health-related quality of life in liver transplant candidates. Clin Transplant 2015; 29: 134-141
  • 665 Dunn MA, Josbeno DA, Tevar AD. et al. Frailty as Tested by Gait Speed is an Independent Risk Factor for Cirrhosis Complications that Require Hospitalization. Am J Gastroenterol 2016; 111: 1768-1775
  • 666 Sinclair M, Poltavskiy E, Dodge JL. et al. Frailty is independently associated with increased hospitalisation days in patients on the liver transplant waitlist. World J Gastroenterol 2017; 23: 899-905
  • 667 Ooi PH, Hager A, Mazurak VC. et al. Sarcopenia in Chronic Liver Disease: Impact on Outcomes. Liver Transpl 2019; 25: 1422-1438
  • 668 Lai JC, Shui AM, Duarte-Rojo A. et al. Frailty, mortality, and health care utilization after liver transplantation: From the Multicenter Functional Assessment in Liver Transplantation (FrAILT) Study. Hepatology 2022; 75: 1471-1479
  • 669 Haugen CE, McAdams-DeMarco M, Verna EC. et al. Association Between Liver Transplant Wait-list Mortality and Frailty Based on Body Mass Index. JAMA Surg 2019; 154: 1103-1109
  • 670 van Vugt JLA, Buettner S, Alferink LJM. et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation-a retrospective study. Transpl Int 2018; 31: 165-174
  • 671 Keeffe EB, Gettys C, Esquivel CO. Liver transplantation in patients with severe obesity. Transplantation 1994; 57: 309-311
  • 672 Sawyer RG, Pelletier SJ, Pruett TL. Increased early morbidity and mortality with acceptable long-term function in severely obese patients undergoing liver transplantation. Clin Transplant 1999; 13: 126-130
  • 673 Nair S, Verma S, Thuluvath PJ. Obesity and its effect on survival in patients undergoing orthotopic liver transplantation in the United States. Hepatology 2002; 35: 105-109
  • 674 Leonard J, Heimbach JK, Malinchoc M. et al. The impact of obesity on long-term outcomes in liver transplant recipients-results of the NIDDK liver transplant database. Am J Transplant 2008; 8: 667-672
  • 675 Diaz-Nieto R, Lykoudis PM, Davidson BR. Recipient body mass index and infectious complications following liver transplantation. HPB (Oxford) 2019; 21: 1032-1038
  • 676 Giorgakis E, Tedeschi M, Bonaccorsi-Riani E. et al. The Effect of Recipient Body Mass Index and Its Extremes on Survival and Graft Vascular and Biliary Complications After Liver Transplantation: A Single Center Retrospective Study. Ann Transplant 2017; 22: 611-621
  • 677 Goldberg D, Ditah IC, Saeian K. et al. Changes in the Prevalence of Hepatitis C Virus Infection, Nonalcoholic Steatohepatitis, and Alcoholic Liver Disease Among Patients With Cirrhosis or Liver Failure on the Waitlist for Liver Transplantation. Gastroenterology 2017; 152: 1090-1099.e1091
  • 678 Holmer M, Melum E, Isoniemi H. et al. Nonalcoholic fatty liver disease is an increasing indication for liver transplantation in the Nordic countries. Liver Int 2018; 38: 2082-2090
  • 679 Younossi ZM, Stepanova M, Ong J. et al. Nonalcoholic Steatohepatitis Is the Most Rapidly Increasing Indication for Liver Transplantation in the United States. Clin Gastroenterol Hepatol 2021; 19: 580-589.e585
  • 680 Kwong AJ, Ebel NH, Kim WR. et al. OPTN/SRTR 2020 Annual Data Report: Liver. Am J Transplant 2022; 22: 204-309
  • 681 Schlansky B, Naugler WE, Orloff SL. et al. Higher Mortality and Survival Benefit in Obese Patients Awaiting Liver Transplantation. Transplantation 2016; 100: 2648-2655
  • 682 Kaur N, Emamaullee J, Lian T. et al. Impact of Morbid Obesity on Liver Transplant Candidacy and Outcomes: National and Regional Trends. Transplantation 2021; 105: 1052-1060
  • 683 Northup PG, Intagliata NM, Davis JPE. et al. Macrosteatotic Allografts and Obese Recipients Have Nearly Equal Negative Impact on Liver Transplant Survival. Transplantation 2020; 104: 1193-1200
  • 684 Kamo N, Kaido T, Hamaguchi Y. et al. Impact of sarcopenic obesity on outcomes in patients undergoing living donor liver transplantation. Clin Nutr 2019; 38: 2202-2209
  • 685 Kobayashi A, Kaido T, Hamaguchi Y. et al. Impact of Sarcopenic Obesity on Outcomes in Patients Undergoing Hepatectomy for Hepatocellular Carcinoma. Ann Surg 2019; 269: 924-931
  • 686 Czigany Z, Kramp W, Bednarsch J. et al. Myosteatosis to predict inferior perioperative outcome in patients undergoing orthotopic liver transplantation. Am J Transplant 2020; 20: 493-503
  • 687 Joliat GR, Kobayashi K, Hasegawa K. et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations 2022. World J Surg 2023; 47: 11-34
  • 688 Coolsen MM, Wong-Lun-Hing EM, van Dam RM. et al. A systematic review of outcomes in patients undergoing liver surgery in an enhanced recovery after surgery pathways. HPB (Oxford) 2013; 15: 245-251
  • 689 Hughes MJ, McNally S, Wigmore SJ. Enhanced recovery following liver surgery: a systematic review and meta-analysis. HPB (Oxford) 2014; 16: 699-706
  • 690 Kaibori M, Matsui K, Ishizaki M. et al. Effects of implementing an &quot;enhanced recovery after surgery&quot; program on patients undergoing resection of hepatocellular carcinoma. Surg Today 2017; 47: 42-51
  • 691 Liang X, Ying H, Wang H. et al. Enhanced recovery care versus traditional care after laparoscopic liver resections: a randomized controlled trial. Surg Endosc 2018; 32: 2746-2757
  • 692 Brustia R, Monsel A, Skurzak S. et al. Guidelines for Perioperative Care for Liver Transplantation: Enhanced Recovery After Surgery (ERAS) Recommendations. Transplantation 2022; 106: 552-561
  • 693 Pollok JM, Tinguely P, Berenguer M. et al. Enhanced recovery for liver transplantation: recommendations from the 2022 International Liver Transplantation Society consensus conference. Lancet Gastroenterol Hepatol 2023; 8: 81-94
  • 694 Carey EJ, Lai JC, Sonnenday C. et al. A North American Expert Opinion Statement on Sarcopenia in Liver Transplantation. Hepatology 2019; 70: 1816-1829
  • 695 Ferreira LG, Ferreira Martins AI, Cunha CE. et al. Negative energy balance secondary to inadequate dietary intake of patients on the waiting list for liver transplantation. Nutrition 2013; 29: 1252-1258
  • 696 Ribeiro HS, Coury NC, de Vasconcelos Generoso S. et al. Energy Balance and Nutrition Status: A Prospective Assessment of Patients Undergoing Liver Transplantation. Nutr Clin Pract 2020; 35: 126-132
  • 697 Viana ACC, Maia FMM, Carvalho NS. et al. Correlation between nutritional assessment and oxidative stress in candidates for liver transplant. Einstein (Sao Paulo) 2020; 18: eAO4039
  • 698 Palmese F, Bolondi I, Giannone FA. et al. The Analysis of Food Intake in Patients with Cirrhosis Waiting for Liver Transplantation: A Neglected Step in the Nutritional Assessment. Nutrients 2019; 11
  • 699 Ney M, Abraldes JG, Ma M. et al. Insufficient Protein Intake Is Associated With Increased Mortality in 630 Patients With Cirrhosis Awaiting Liver Transplantation. Nutr Clin Pract 2015; 30: 530-536
  • 700 Nakajima H, Yokoyama Y, Inoue T. et al. Clinical Benefit of Preoperative Exercise and Nutritional Therapy for Patients Undergoing Hepato-Pancreato-Biliary Surgeries for Malignancy. Ann Surg Oncol 2019; 26: 264-272
  • 701 de Franchis R, Bosch J, Garcia-Tsao G. et al. Baveno VII – Renewing consensus in portal hypertension. J Hepatol 2022; 76: 959-974
  • 702 Sharpton SR, Terrault NA, Posselt AM. Outcomes of Sleeve Gastrectomy in Obese Liver Transplant Candidates. Liver Transpl 2019; 25: 538-544
  • 703 Russell K, Zhang HG, Gillanders LK. et al. Preoperative immunonutrition in patients undergoing liver resection: A prospective randomized trial. World J Hepatol 2019; 11: 305-317
  • 704 Grąt M, Wronka KM, Lewandowski Z. et al. Effects of continuous use of probiotics before liver transplantation: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2017; 36: 1530-1539
  • 705 Kaido T, Mori A, Oike F. et al. Impact of pretransplant nutritional status in patients undergoing liver transplantation. Hepatogastroenterology 2010; 57: 1489-1492
  • 706 Kaido T, Mori A, Ogura Y. et al. Pre- and perioperative factors affecting infection after living donor liver transplantation. Nutrition 2012; 28: 1104-1108
  • 707 Shirabe K, Yoshimatsu M, Motomura T. et al. Beneficial effects of supplementation with branched-chain amino acids on postoperative bacteremia in living donor liver transplant recipients. Liver Transpl 2011; 17: 1073-1080
  • 708 Ardito F, Lai Q, Rinninella E. et al. The impact of personalized nutritional support on postoperative outcome within the enhanced recovery after surgery (ERAS) program for liver resections: results from the NutriCatt protocol. Updates Surg 2020; 72: 681-691
  • 709 Chin SE, Shepherd RW, Thomas BJ. et al. Nutritional support in children with end-stage liver disease: a randomized crossover trial of a branched-chain amino acid supplement. Am J Clin Nutr 1992; 56: 158-163
  • 710 Singer P, Cohen J, Cynober L. Effect of nutritional state of brain-dead organ donor on transplantation. Nutrition 2001; 17: 948-952
  • 711 Tietge UJ, Selberg O, Kreter A. et al. Alterations in glucose metabolism associated with liver cirrhosis persist in the clinically stable long-term course after liver transplantation. Liver Transpl 2004; 10: 1030-1040
  • 712 Hussaini SH, Oldroyd B, Stewart SP. et al. Effects of orthotopic liver transplantation on body composition. Liver 1998; 18: 173-179
  • 713 Merli M, Giusto M, Riggio O. et al. Improvement of nutritional status in malnourished cirrhotic patients one year after liver transplantation. eSPEN 2011; 6: e142-e147
  • 714 Anastácio LR, Ferreira LG, Ribeiro HS. et al. Sarcopenia, obesity and sarcopenic obesity in liver transplantation: a body composition prospective study. Arq Bras Cir Dig 2019; 32: e1434
  • 715 Krasnoff JB, Vintro AQ, Ascher NL. et al. Objective measures of health-related quality of life over 24 months post-liver transplantation. Clin Transplant 2005; 19: 1-9
  • 716 Krasnoff JB, Vintro AQ, Ascher NL. et al. A randomized trial of exercise and dietary counseling after liver transplantation. Am J Transplant 2006; 6: 1896-1905
  • 717 Roman E, Torrades MT, Nadal MJ. et al. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci 2014; 59: 1966-1975
  • 718 Totti V, Tamè M, Burra P. et al. Physical Condition, Glycemia, Liver Function, and Quality of Life in Liver Transplant Recipients After a 12-Month Supervised Exercise Program. Transplant Proc 2019; 51: 2952-2957
  • 719 EASL. Clinical Practice Guidelines: Liver transplantation. J Hepatol 2016; 64: 433-485
  • 720 Richards J, Gunson B, Johnson J. et al. Weight gain and obesity after liver transplantation. Transpl Int 2005; 18: 461-466
  • 721 Laryea M, Watt KD, Molinari M. et al. Metabolic syndrome in liver transplant recipients: prevalence and association with major vascular events. Liver Transpl 2007; 13: 1109-1114
  • 722 Bianchi G, Marchesini G, Marzocchi R. et al. Metabolic syndrome in liver transplantation: relation to etiology and immunosuppression. Liver Transpl 2008; 14: 1648-1654
  • 723 Lattanzi B, D'Ambrosio D, Tavano D. et al. Weight Gain and De Novo Metabolic Disorders after Liver Transplantation. Nutrients 2019; 11
  • 724 Alves BC, Bruch-Bertani JP, Galinatti CBM. et al. Obesity, dynapenia and high cardiovascular risk co-exist in post-liver transplant setting: results of a cross-sectional study. Clin Res Hepatol Gastroenterol 2019; 43: 140-147
  • 725 Li XY, Tan HK, Loh YH. New-onset cardiovascular risk factors following liver transplantation: A cohort analysis in Singapore. Ann Acad Med Singap 2021; 50: 548-555
  • 726 Beckmann S, Denhaerynck K, Stampf S. et al. New-onset obesity after liver transplantation—outcomes and risk factors: the Swiss Transplant Cohort Study. Transplant Int 2018; 31: 1254-1267
  • 727 Bhat V, Tazari M, Watt KD. et al. New-Onset Diabetes and Preexisting Diabetes Are Associated With Comparable Reduction in Long-Term Survival After Liver Transplant: A Machine Learning Approach. Mayo Clin Proc 2018; 93: 1794-1802
  • 728 Hasse JM, Blue LS, Liepa GU. et al. Early enteral nutrition support in patients undergoing liver transplantation. JPEN J Parenter Enteral Nutr 1995; 19: 437-443
  • 729 Wicks C, Somasundaram S, Bjarnason I. et al. Comparison of enteral feeding and total parenteral nutrition after liver transplantation. Lancet 1994; 344: 837-840
  • 730 Reilly J, Mehta R, Teperman L. et al. Nutritional support after liver transplantation: a randomized prospective study. JPEN J Parenter Enteral Nutr 1990; 14: 386-391
  • 731 Hu QG, Zheng QC. The influence of Enteral Nutrition in postoperative patients with poor liver function. World J Gastroenterol 2003; 9: 843-846
  • 732 Rayes N, Seehofer D, Hansen S. et al. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation 2002; 74: 123-127
  • 733 Rayes N, Seehofer D, Theruvath T. et al. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation--a randomized, double-blind trial. Am J Transplant 2005; 5: 125-130
  • 734 Eguchi S, Takatsuki M, Hidaka M. et al. Perioperative synbiotic treatment to prevent infectious complications in patients after elective living donor liver transplantation: a prospective randomized study. Am J Surg 2011; 201: 498-502
  • 735 Ikegami T, Shirabe K, Yoshiya S. et al. Bacterial sepsis after living donor liver transplantation: the impact of early enteral nutrition. J Am Coll Surg 2012; 214: 288-295
  • 736 Kim JM, Joh JW, Kim HJ. et al. Early Enteral Feeding After Living Donor Liver Transplantation Prevents Infectious Complications: A Prospective Pilot Study. Medicine (Baltimore) 2015; 94: e1771
  • 737 Mehta PL, Alaka KJ, Filo RS. et al. Nutrition support following liver transplantation: comparison of jejunal versus parenteral routes. Clin Transplant 1995; 9: 364-369
  • 738 Pescovitz MD, Mehta PL, Leapman SB. et al. Tube jejunostomy in liver transplant recipients. Surgery 1995; 117: 642-647
  • 739 Schmelzle M, Krenzien F, Dahlke P. et al. Validation of the Enhanced Recovery after Surgery (ERAS) society recommendations for liver surgery: a prospective, observational study. Hepatobiliary Surg Nutr 2023; 12: 20-36
  • 740 Fan ST, Lo CM, Lai EC. et al. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 1994; 331: 1547-1552
  • 741 Kanematsu T, Koyanagi N, Matsumata T. et al. Lack of preventive effect of branched-chain amino acid solution on postoperative hepatic encephalopathy in patients with cirrhosis: a randomized, prospective trial. Surgery 1988; 104: 482-488
  • 742 Tang ZF, Ling YB, Lin N. et al. Glutamine and recombinant human growth hormone protect intestinal barrier function following portal hypertension surgery. World J Gastroenterol 2007; 13: 2223-2228
  • 743 Ma M, Wang X, Li J. et al. Efficacy and safety of probiotics and prebiotics in liver transplantation: A systematic review and meta-analysis. Nutr Clin Pract 2021; 36: 808-819
  • 744 Gluud LL, Dam G, Les I. et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 2017; 5: Cd001939
  • 745 Kamo N, Kaido T, Uozumi R. et al. Effect of administration of β-hydroxy-β-methyl butyrate-enriched formula after liver transplantation: A pilot randomized controlled trial. Nutrition 2020; 79-80: 110871