RSS-Feed abonnieren
DOI: 10.1055/a-2341-9274
Efficient Synthesis of Fluorene Derivatives by Benzannulation of Indene Dienes with Benzoylacetonitrile Catalyzed by Lipase
We gratefully acknowledge the Science and Technology Development Program of Jilin Province (No. YDZJ202201ZYTS102).
![](https://www.thieme-connect.de/media/synlett/202504/lookinside/thumbnails/st-2024-l0165-l_10-1055_a-2341-9274-1.jpg)
Abstract
An enzymatic method was developed for the synthesis of fluorene derivatives by benzannulation of indene dienes with benzoylacetonitrile in a nonaqueous solvent. Under the optimal reaction condition [indene diene (0.5 mmol), benzoylacetonitrile (0.5 mmol), ethanol (2 mL), lipase from porcine pancreas (5 mg), 50 °C, 24 h], fluorenes bearing various groups were obtained in satisfactory yields (83–93%). This method not only offers a significant advancement in the synthesis of fluorene derivatives, but also represents a new application of lipase in promiscuous enzyme catalysis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2341-9274.
- Supporting Information
Publikationsverlauf
Eingereicht: 28. Mai 2024
Angenommen nach Revision: 10. Juni 2024
Accepted Manuscript online:
10. Juni 2024
Artikel online veröffentlicht:
12. Juli 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Bernius M, Inbasekaran M, Woo E, Wu W.-S, Wujkowski LJ. Mater. Sci.-Mater. El. 2000; 11: 111
- 2 Burns DM, Iball J. Nature 1954; 173: 635
- 3 Burns DM, Iball J. Proc. R. Soc. London, Ser. A 1955; 227: 200
- 4 Jeon NJ, Na H, Jung EH, Yang T.-Y, Lee YG, Kim G, Shin H.-W, Seok SI, Seo J. Nat. Energy 2018; 3: 682
- 5 Abbel R, Schenning AP. H. J, Meijer EW. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 4215
- 6 Gu Z.-B, Lin H.-X, Cui Y.-M, Li M.-J, Hao Z.-S. Monatsh. Chem. 2015; 146: 1519
- 7 Neher D. Macromol. Rapid Commun. 2001; 22: 1365
- 8 Bundgaard E, Krebs FC. L. Sol. Energy Mater. Sol. Cells 2007; 91: 954
- 9 Thomas SW, Joly GD, Swager TM. Chem. Rev. 2007; 107: 1339
- 10 Cha H, Kong H, Chung D.-S, Yun W.-M, An T.-K, Hwang J, Kim Y.-H, Shim H.-K, Park C.-E. Org. Electron 2010; 11: 1534
- 11 Larranaga MD, Lewis RJ. Sr, Lewis RA. Hawley's Condensed Chemical Dictionary, 16th ed. 2016
- 12 Haggam RA. Tetrahedron 2013; 69: 6488
- 13 Gao Q, Xu S. Org. Biomol. Chem. 2018; 16: 208
- 14 Xu S, Shangguan X, Li H, Zang Y, Wang J. J. Org. Chem. 2015; 80: 7779
- 15 Lee SH, Nakamura T, Tsutsui T. Org. Lett. 2001; 3: 2005
- 16 Pan S, Zhu Q, Zhang Y. Synlett 2022; 33: 1826
- 17 Chu X.-Q, Xing Z.-H, Meng H, Xu X.-P. Org. Chem. Front. 2016; 3: 165
- 18 Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2016; 18: 5612
- 19 Deng Y.-H, Qin L, Li R, Wang Y.-B, Zhu J.-Y, Fu J.-Y, Zhang C.-B, Zhao L. Org. Lett. 2022; 24: 8277
- 20 Hult K, Berglund P. Trends Biotechnol. 2007; 25: 231
- 21 Leveson-Gower RB, Mayer C, Roelfes G. Nat. Rev. Chem. 2019; 3: 687
- 22 Reetz MT. Chem. Rec. 2016; 16: 2449
- 23 Khersonsky O, Tawfik DS. Annu. Rev. Biochem. 2010; 79: 471
- 24 Yoshikuni Y, Ferrin TE, Keasling JD. Nature 2006; 440: 1078
- 25 Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renniger NS, Chang MC. Y, Baker D, Keasling JD. ACS Chem. Biol. 2009; 4: 261
- 26 Xu Y, Li F, Zhao N, Su J, Wang C, Wang C, Li Z, Wang L. Green Chem. 2021; 23: 8047
- 27 Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Enzyme Microb. Technol. 2007; 40: 1451
- 28 Miller BG, Raines RT. Biochemistry 2004; 43: 6387
- 29 Miller BG, Raines RT. Biochemistry 2005; 44: 10776
- 30 Zhang J, Qian W, Wang C, Cao Z, Chen S, Zhang L, Zhang Y, Wang L. Green Chem. Lett. Rev. 2018; 11: 508
- 31 Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Adv. Synth. Catal. 2011; 353: 2885
- 32 Hu Y, Yang J, Jia R, Ding Y, Li S, Huang H. Bioprocess Biosyst. Eng. 2014; 37: 1617
- 33 Xu Y, Li F, Ma J, Li J, Xie H, Wang C, Chen P, Wang L. Molecules 2022; 27: 7798
- 34 Jia R, Hu Y, Huang H. Process Biochem. 2014; 49: 668
- 35 Bordeaux M, Tyagi V, Fasan R. Angew. Chem. 2015; 127: 1764
- 36 Xu C, Suo H, Xue Y, Qin J, Chen H.-Y, Hu Y. Mol. Catal. 2021; 501: 111355
- 37 Sarmah N, Revathi D, Sheelu G, Yamuna RK, Sridhar S, Mehtab V, Sumana C. Biotechnol. Prog. 2018; 34: 5
- 38 Klibanov AM. Nature 2001; 409: 241
- 39 Bavandi H, Habibi Z, Yousefi M. Bioorg. Chem. 2020; 103: 104139
- 40 Lai Y.-F, Zheng H, Chai S.-J, Zhang P.-F, Chen X.-Z. Green Chem. 2010; 12: 1917
- 41 Feng X.-W, Li C, Wang N, Li K, Zhang W.-W, Wang Z, Yu X.-Q. Green Chem. 2009; 11: 1933
- 42 Tang Y, Wang C, Xie H, Xu H, Wang C, Du C, Wang Z, Wang L. Catalysts 2023; 13: 143
- 43 Yang M.-L, Dong C.-L, Guan Z, He Y.-H. J. Org. Chem. 2024; 89: 1285
- 44 Fluorene Derivatives 3a–k; General Procedure The appropriate indene diene 1 (0.5 mmol), benzoylacetonitrile (2; 0.5 mmol), and PPL (5 mg) were added to EtOH (2 mL), and the mixture was stirred at 50 °C in a shaker until the reaction was complete (TLC). The product was then purified by flash column chromatography [silica gel, PE–EtOAc (2:1 to 10:1)]. 3-Amino-1-phenyl-9H-fluorene-2,4-dicarbonitrile (3a) Fluorescent solid; yield: 93%. 1H NMR (400 MHz, DMSO-d6): δ = 3.72 (s, 2 H), 6.78 (s, 2 H), 7.53–7.60 (m, 8 H), 8.28 (d, J = 7.56 Hz, 1 H). 3-Amino-1-(3-methylphenyl)-9H-fluorene-2,4-dicarbonitrile (3b) Fluorescent solid; yield: 86%. 1H NMR (400 MHz, DMSO-d6): δ = 3.72 2.42 (s, 3 H), 3.71 (s, 2 H), 6.75 (s, 2 H), 7.34–7.74 (m, 6 H), 8.42 (d, J = 8.08 Hz, 2 H). The NMR spectra of the products were identical to those previously reported.19