Subscribe to RSS
DOI: 10.1055/a-2341-9274
Efficient Synthesis of Fluorene Derivatives by Benzannulation of Indene Dienes with Benzoylacetonitrile Catalyzed by Lipase
We gratefully acknowledge the Science and Technology Development Program of Jilin Province (No. YDZJ202201ZYTS102).

Abstract
An enzymatic method was developed for the synthesis of fluorene derivatives by benzannulation of indene dienes with benzoylacetonitrile in a nonaqueous solvent. Under the optimal reaction condition [indene diene (0.5 mmol), benzoylacetonitrile (0.5 mmol), ethanol (2 mL), lipase from porcine pancreas (5 mg), 50 °C, 24 h], fluorenes bearing various groups were obtained in satisfactory yields (83–93%). This method not only offers a significant advancement in the synthesis of fluorene derivatives, but also represents a new application of lipase in promiscuous enzyme catalysis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2341-9274.
- Supporting Information
Publication History
Received: 28 May 2024
Accepted after revision: 10 June 2024
Accepted Manuscript online:
10 June 2024
Article published online:
12 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Bernius M, Inbasekaran M, Woo E, Wu W.-S, Wujkowski LJ. Mater. Sci.-Mater. El. 2000; 11: 111
- 2 Burns DM, Iball J. Nature 1954; 173: 635
- 3 Burns DM, Iball J. Proc. R. Soc. London, Ser. A 1955; 227: 200
- 4 Jeon NJ, Na H, Jung EH, Yang T.-Y, Lee YG, Kim G, Shin H.-W, Seok SI, Seo J. Nat. Energy 2018; 3: 682
- 5 Abbel R, Schenning AP. H. J, Meijer EW. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 4215
- 6 Gu Z.-B, Lin H.-X, Cui Y.-M, Li M.-J, Hao Z.-S. Monatsh. Chem. 2015; 146: 1519
- 7 Neher D. Macromol. Rapid Commun. 2001; 22: 1365
- 8 Bundgaard E, Krebs FC. L. Sol. Energy Mater. Sol. Cells 2007; 91: 954
- 9 Thomas SW, Joly GD, Swager TM. Chem. Rev. 2007; 107: 1339
- 10 Cha H, Kong H, Chung D.-S, Yun W.-M, An T.-K, Hwang J, Kim Y.-H, Shim H.-K, Park C.-E. Org. Electron 2010; 11: 1534
- 11 Larranaga MD, Lewis RJ. Sr, Lewis RA. Hawley's Condensed Chemical Dictionary, 16th ed. 2016
- 12 Haggam RA. Tetrahedron 2013; 69: 6488
- 13 Gao Q, Xu S. Org. Biomol. Chem. 2018; 16: 208
- 14 Xu S, Shangguan X, Li H, Zang Y, Wang J. J. Org. Chem. 2015; 80: 7779
- 15 Lee SH, Nakamura T, Tsutsui T. Org. Lett. 2001; 3: 2005
- 16 Pan S, Zhu Q, Zhang Y. Synlett 2022; 33: 1826
- 17 Chu X.-Q, Xing Z.-H, Meng H, Xu X.-P. Org. Chem. Front. 2016; 3: 165
- 18 Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2016; 18: 5612
- 19 Deng Y.-H, Qin L, Li R, Wang Y.-B, Zhu J.-Y, Fu J.-Y, Zhang C.-B, Zhao L. Org. Lett. 2022; 24: 8277
- 20 Hult K, Berglund P. Trends Biotechnol. 2007; 25: 231
- 21 Leveson-Gower RB, Mayer C, Roelfes G. Nat. Rev. Chem. 2019; 3: 687
- 22 Reetz MT. Chem. Rec. 2016; 16: 2449
- 23 Khersonsky O, Tawfik DS. Annu. Rev. Biochem. 2010; 79: 471
- 24 Yoshikuni Y, Ferrin TE, Keasling JD. Nature 2006; 440: 1078
- 25 Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renniger NS, Chang MC. Y, Baker D, Keasling JD. ACS Chem. Biol. 2009; 4: 261
- 26 Xu Y, Li F, Zhao N, Su J, Wang C, Wang C, Li Z, Wang L. Green Chem. 2021; 23: 8047
- 27 Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Enzyme Microb. Technol. 2007; 40: 1451
- 28 Miller BG, Raines RT. Biochemistry 2004; 43: 6387
- 29 Miller BG, Raines RT. Biochemistry 2005; 44: 10776
- 30 Zhang J, Qian W, Wang C, Cao Z, Chen S, Zhang L, Zhang Y, Wang L. Green Chem. Lett. Rev. 2018; 11: 508
- 31 Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Adv. Synth. Catal. 2011; 353: 2885
- 32 Hu Y, Yang J, Jia R, Ding Y, Li S, Huang H. Bioprocess Biosyst. Eng. 2014; 37: 1617
- 33 Xu Y, Li F, Ma J, Li J, Xie H, Wang C, Chen P, Wang L. Molecules 2022; 27: 7798
- 34 Jia R, Hu Y, Huang H. Process Biochem. 2014; 49: 668
- 35 Bordeaux M, Tyagi V, Fasan R. Angew. Chem. 2015; 127: 1764
- 36 Xu C, Suo H, Xue Y, Qin J, Chen H.-Y, Hu Y. Mol. Catal. 2021; 501: 111355
- 37 Sarmah N, Revathi D, Sheelu G, Yamuna RK, Sridhar S, Mehtab V, Sumana C. Biotechnol. Prog. 2018; 34: 5
- 38 Klibanov AM. Nature 2001; 409: 241
- 39 Bavandi H, Habibi Z, Yousefi M. Bioorg. Chem. 2020; 103: 104139
- 40 Lai Y.-F, Zheng H, Chai S.-J, Zhang P.-F, Chen X.-Z. Green Chem. 2010; 12: 1917
- 41 Feng X.-W, Li C, Wang N, Li K, Zhang W.-W, Wang Z, Yu X.-Q. Green Chem. 2009; 11: 1933
- 42 Tang Y, Wang C, Xie H, Xu H, Wang C, Du C, Wang Z, Wang L. Catalysts 2023; 13: 143
- 43 Yang M.-L, Dong C.-L, Guan Z, He Y.-H. J. Org. Chem. 2024; 89: 1285
- 44 Fluorene Derivatives 3a–k; General Procedure The appropriate indene diene 1 (0.5 mmol), benzoylacetonitrile (2; 0.5 mmol), and PPL (5 mg) were added to EtOH (2 mL), and the mixture was stirred at 50 °C in a shaker until the reaction was complete (TLC). The product was then purified by flash column chromatography [silica gel, PE–EtOAc (2:1 to 10:1)]. 3-Amino-1-phenyl-9H-fluorene-2,4-dicarbonitrile (3a) Fluorescent solid; yield: 93%. 1H NMR (400 MHz, DMSO-d6): δ = 3.72 (s, 2 H), 6.78 (s, 2 H), 7.53–7.60 (m, 8 H), 8.28 (d, J = 7.56 Hz, 1 H). 3-Amino-1-(3-methylphenyl)-9H-fluorene-2,4-dicarbonitrile (3b) Fluorescent solid; yield: 86%. 1H NMR (400 MHz, DMSO-d6): δ = 3.72 2.42 (s, 3 H), 3.71 (s, 2 H), 6.75 (s, 2 H), 7.34–7.74 (m, 6 H), 8.42 (d, J = 8.08 Hz, 2 H). The NMR spectra of the products were identical to those previously reported.19