Subscribe to RSS
DOI: 10.1055/a-2343-1001
Recent Advances in Gold-Catalyzed Transformations of Vinyldiazo Reagents
Our work in this field has been supported by the Ministerio de Ciencia e Innovación (Grant No. PID2022-138232NB-I00), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER).
Abstract
Since their discovery in 2011, gold-catalyzed transformations of vinyldiazo compounds have become an important synthetic tool, enabling the identification of new reaction patterns that have greatly expanded the versatility of these reagents. In this short review, we showcase the most relevant advances that have been made in this exciting area of research.
1 Introduction
2 Gold-Catalyzed Transformations of Vinyldiazo Compounds Involving Metal Carbene Intermediates
2.1 Liu’s Seminal Work: Vinylogous Reactivity of Au(I) Vinyl Carbenes
2.2 Gold-Catalyzed Reactions of Vinyldiazo Compounds with Alkenes
2.3 Gold-Catalyzed Reactions of Vinyldiazo Compounds with Alkynes
2.4 Gold-Catalyzed Reactions of Vinyldiazo Compounds with Allenes
2.5 Gold-Catalyzed Reactions of Vinyldiazo Reagents with Aromatic Compounds
2.6 Gold-Catalyzed Reactions of Vinyldiazo Compounds with Nitriles
2.7 Gold-Catalyzed Diazo Cross-Couplings
3 Gold-Catalyzed Transformations of Vinyldiazo Compounds That Do Not Involve Initial Dinitrogen Extrusion
3.1 Gold-Catalyzed Formal [n+2] Cycloaddition Reactions through the Vinyl Moiety of Vinyldiazo Compounds
3.2 Gold-Catalyzed Transformations of Vinyldiazo Compounds Involving Initial Activation of the Non-Diazo Reagent
4 Conclusions
Key words
vinyldiazo compounds - gold - carbenes - cyclization - C–H functionalization - regioselectivityPublication History
Received: 10 May 2024
Accepted after revision: 11 June 2024
Accepted Manuscript online:
11 June 2024
Article published online:
04 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Current address: O. Bernardo, Department of Chemistry, University of Michigan, Ann Arbor, MI-48109-1055, USA.
- 2a Regitz M, Maas G. Diazo Compounds: Properties and Synthesis 1986; 65-198
- 2b Padwa A, Weingarten MD. Chem. Rev. 1996; 96: 223
- 2c Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. John Wiley & Sons; New York: 1998
- 2d Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
- 2e Zhang Z, Wang J. Tetrahedron 2008; 64: 6577
- 3a Contemporary Carbene Chemistry . Moss RA, Doyle MP. John Wiley & Sons; Hoboken: 2013
- 3b Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
- 4 Fructos MR, Belderrain TR, de Fremont P, Scott NM, Nolan SP, Díaz-Requejo MM, Pérez PJ. Angew. Chem. Int. Ed. 2005; 44: 5284
- 5 Yu Z, Ma B, Chen M, Wu H.-H, Liu L, Zhang J. J. Am. Chem. Soc. 2014; 136: 6904
- 6 Xi Y, Su Y, Yu Z, Dong B, McClain EJ, Lan Y, Shi X. Angew. Chem. Int. Ed. 2014; 53: 9817
- 7a Liu Y, Yu Z, Zhang JZ, Liu L, Xia F, Zhang J. Chem. Sci. 2016; 7: 1988
- 7b Fructos MR, Besora M, Braga AA. C, Díaz-Requejo MM, Maseras F, Pérez PJ. Organometallics 2017; 36: 172
- 7c Pizarro JD, Schmidtke IL, Nova A, Fructos MR, Pérez PJ. ACS Catal. 2022; 12: 6851
- 8a For seminal work on stereoselective metal-catalyzed intermolecular cyclopropanation with styryldiazoacetate, see: Davies HM. L, Clark TJ, Church LA. Tetrahedron Lett. 1989; 30: 5057
- 8b For seminal work on the enantioselective cyclopropanation of alkenes using vinyldiazo compounds, see: Davies HM. L, Hutcheson DK. Tetrahedron Lett. 1993; 34: 7243
- 9a Bhakta S, Ghosh T. Tetrahedron 2021; 50: 132167
- 9b Fructos MR, Díaz-Requejo MM, Pérez PJ. Chem. Commun. 2016; 52: 7326
- 9c Liu L, Zhang J. Chem. Soc. Rev. 2016; 45: 506
- 9d Wei F, Song C, Ma Y, Zhou L, Tung C.-H, Xu Z. Sci. Bull. 2015; 60: 1479
- 10a Cheng Q.-Q, Yu Y, Yedoyan J, Doyle MP. ChemCatChem 2018; 10: 488
- 10b López E, González-Pelayo S, López LA. Chem. Rec. 2017; 17: 312
- 10c López E, Bernardo O, López LA. Tetrahedron Lett. 2022; 109: 154156
- 11 Pagar VV, Jadhav AM, Liu R.-S. J. Am. Chem. Soc. 2011; 133: 20728
- 12a Davies HM. L, Saikali E, Young WB. J. Org. Chem. 1991; 56: 5696
- 12b Davies HM. L, Hu B, Saikali E, Bruzinski PR. J. Org. Chem. 1994; 59: 4535
- 12c Davies HM. L, Yokota Y. Tetrahedron Lett. 2000; 41: 4851
- 12d Sevryugina Y, Weaver B, Hansen J, Thompson J, Davies HM. L, Petrukhina MA. Organometallics 2008; 27: 1750
- 12e Yue Y, Wang Y, Hu W. Tetrahedron Lett. 2007; 48: 3975
- 12f Lian Y, Davies HM. L. Org. Lett. 2010; 12: 924
- 12g Hansen HJ, Davies HM. L. Chem. Sci. 2011; 2: 457
- 12h Barluenga J, Lonzi G, Riesgo L, López LA, Tomás M. J. Am. Chem. Soc. 2010; 132: 13200
- 13 Barluenga J, Lonzi G, Tomás M, López LA. Chem. Eur. J. 2013; 19: 1573
- 14 López E, Lonzi G, López LA. Synthesis 2017; 49: 4461
- 15 For a completely different approach to cyclopentene derivatives from vinyldiazo compounds and styrenes using photocatalysis, see: Sarabia FJ, Li K, Ferreira EM. Angew. Chem. Int. Ed. 2018; 57: 11015
- 16 Yamamoto K, López E, Barrio P, Borge J, López LA. Chem. Eur. J. 2020; 26: 6999
- 17 Bernardo O, Yamamoto K, Fernández I, López LA. Org. Lett. 2021; 23: 4452
- 18 Briones JF, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 13314
- 19 The rhodium-catalyzed process resulted in the formation of acyclic products resulting from a combined C–H insertion/Cope rearrangement: Lian Y, Davies HM. L. J. Am. Chem. Soc. 2011; 133: 11940
- 20 Briones JF, Hansen J, Hardcastle KI, Autschbach J, Davies HM. L. J. Am. Chem. Soc. 2010; 132: 17211
- 21a Using diazo compounds as the carbene source: Briones JF, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 11916
- 21b Rettenmeier E, Schuster AM, Rudolph M, Rominger F, Gade CA, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 5880
- 21c Bernardo O, González-Pelayo S, Fernández I, López LA. Angew. Chem. Int. Ed. 2021; 60: 25258
- 21d Using cyclopropenes as the carbene source: Cheng X, Zhu L, Lin M, Chen J, Huang X. Chem. Commun. 2017; 53: 3745
- 22a Mascareñas JL, Varela I, López F. Acc. Chem. Res. 2019; 52: 465
- 22b Lledó A, Pla-Quintana A, Roglans A. Chem. Soc. Rev. 2016; 45: 2010
- 22c López F, Mascareñas JL. Chem. Soc. Rev. 2014; 43: 2904
- 22d Alcaide B, Almendros P. Chem. Soc. Rev. 2014; 43: 2886
- 22e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 22f Krause N, Winter C. Chem. Rev. 2011; 111: 1994
- 22g Ma S. Acc. Chem. Res. 2009; 42: 1679
- 23a Yang W, Hashmi AS. K. Chem. Soc. Rev. 2014; 43: 2941
- 23b Obradors C, Echavarren AM. Chem. Commun. 2014; 50: 16
- 24a Chen L, Yu J, Tang S, Shao Y, Sun J. Org. Lett. 2019; 21: 9050
- 24b Wang Y, Zhang P, Qian D, Zhang J. Angew. Chem. Int. Ed. 2015; 54: 14849
- 24c Faustino H, Varela I, Mascareñas JL, López F. Chem. Sci. 2015; 6: 2903
- 24d Wang C, Xu G, Shao X, Tang S, Sun J. Org. Lett. 2020; 22: 5990
- 24e Hernández-Díaz C, Rubio E, González JM. Eur. J. Org. Chem. 2016; 265
- 24f Faustino H, López F, Castedo L, Mascareñas JL. Chem. Sci. 2011; 2: 633
- 24g Suárez-Pantiga S, Hernández-Díaz C, Rubio E, González JM. Angew. Chem. Int. Ed. 2012; 51: 11552
- 24h Pirovano V, Decataldo L, Rossi E, Vicente R. Chem. Commun. 2013; 49: 3594
- 24i Wang Y, Zhang P, Liu Y, Xia F, Zhang J. Chem. Sci. 2015; 6: 5564
- 24j Faustino H, Bernal P, Castedo L, López F, Mascareñas JL. Adv. Synth. Catal. 2012; 354: 1658
- 24k Li X.-X, Zhu L.-L, Zhou W, Chen Z. Org. Lett. 2012; 14: 436
- 24l Suárez-Pantiga S, Hernández-Díaz C, Piedrafita M, Rubio E, González JM. Adv. Synth. Catal. 2012; 354: 1651
- 25 López E, González J, López LA. Adv. Synth. Catal. 2016; 358: 1428
- 26 López E, Lonzi G, González J, López LA. Chem. Commun. 2016; 52: 9398
- 27 For a similar transformation involving 7-styryl-1,3,5-cycloheptatrienes as the gold vinyl carbene source, see: Yin X, Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 14591
- 28 López E, Lonzi G, López LA. Organometallics 2014; 33: 5924
- 29a Xiao Y, Zhang L. Org. Lett. 2012; 14: 4662
- 29b He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
- 29c Doyle KJ, Moody CJ. Tetrahedron 1994; 50: 3761
- 29d Ibata T, Fukushima K. Chem. Lett. 1992; 2197
- 30 Lonzi G, López LA. Adv. Synth. Catal. 2013; 355: 1948
- 31 Karad SN, Liu R.-S. Angew. Chem. Int. Ed. 2014; 53: 5444
- 32 Zhang D, Xu G, Ding D, Zhu C, Li J, Sun J. Angew. Chem. Int. Ed. 2014; 53: 11070
- 33 Barluenga J, Riesgo L, López LA, Rubio E, Tomás M. Angew. Chem. Int. Ed. 2009; 48: 7569
- 34 Hansen JH, Parr BT, Pelphrey P, Jin Q, Autschbach J, Davies HM. L. Angew. Chem. Int. Ed. 2011; 50: 2544
- 35 Xu G, Zhu C, Gu W, Li J, Sun J. Angew. Chem. Int. Ed. 2015; 54: 883
- 36 Jadhav AM, Pagar VV, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 11809
- 37 Pagar VV, Liu R.-S. Angew. Chem. Int. Ed. 2015; 54: 4923
- 38 Pagar VV, Jadhav AM, Liu R.-S. J. Org. Chem. 2013; 78: 5711
- 39 Pagar VV, Liu R.-S. Org. Biomol. Chem. 2015; 13: 6166
- 40 Kulandai Raj AS, Liu R.-S. Angew. Chem. Int. Ed. 2019; 58: 10980
- 41 Kulandai Raj AS, Liu R.-S. Adv. Synth. Catal. 2020; 362: 2517
- 42 Kulandai Raj AS, Narode AS, Liu R.-S. Org. Lett. 2021; 23: 1378
- 43 Kardile RD, Liu R.-S. Org. Lett. 2020; 22: 8229
- 44 Narode AS, Liu R.-S. Asian J. Org. Chem. 2023; 12: e202300199
- 45a Gade AB, Urvashi, Patil NT. Org. Chem. Front. 2024; 11: 1858
- 45b Das A, Patil NT. Chem. Eur. J. 2022; 28: e202104371
- 45c Jiang J.-J, Wong M.-K. Chem. Asian J. 2021; 16: 364
- 45d Zuccarello G, Escofet I, Caniparoli U, Echavarren AM. ChemPlusChem 2021; 86: 1283
- 45e Li Y, Li W, Zhang J. Chem. Eur. J. 2017; 23: 467
- 45f Zi W, Toste FD. Chem. Soc. Rev. 2016; 45: 4567
For general reviews on the reactivity of stabilized diazo compounds, see:
For reviews on general aspects of the chemistry of carbenes, see:
For mechanistic studies on this arene C–H bond functionalization, see:
For representative reviews on gold-catalyzed transformations of diazo compounds, see:
For representative reviews covering different aspects of the chemistry of vinyldiazo compounds, see:
For previous examples of vinylogous reactivity in metal vinylcarbenes generated from vinyldiazo compounds, see:
For selected examples of trapping of gold carbene intermediates with alkynes, see:
Using propargyl esters as the carbene source:
For selected reviews on allene chemistry, see:
For reviews on mechanistic aspects of gold-catalyzed transformations of allenes, see:
For selected examples of gold-catalyzed intermolecular transformations of allenamides, see:
For representative examples of catalytic [3+2] cycloadditions between nitriles and α-oxo- or α-imino carbene intermediates, see:
For selected reviews on asymmetric gold catalysis, see: