RSS-Feed abonnieren
DOI: 10.1055/a-2352-7224
Typ-1-Interferonopathien
Ein Update
ZUSAMMENFASSUNG
Die Typ-1-Interferonopathien umfassen eine klinisch heterogene Gruppe seltener Erkrankungen, die auf einer genetisch bedingten Fehlfunktion des angeborenen Immunsystems beruhen. Zentrales Merkmal ist eine chronisch gesteigerte Aktivität der antiviralen Typ-1-Interferon(IFN)-Achse, die zu einer Immundysregulation führt. Das klinische Spektrum der Typ-1-Interferonopathien ist breit und primär durch Autoinflammation und Autoimmunität gekennzeichnet, wobei bei einigen Erkrankungen auch eine Infektneigung auftreten kann. Neben systemischen Zeichen wie Fieberschüben und erhöhten Entzündungswerten können verschiedene organspezifische Manifestationen auftreten. Pathogenetisch liegen den Typ-1-Interferonopathien Störungen des Metabolismus und der immunologischen Erkennung von intrazellulären Nukleinsäuren zugrunde. Da einige Erkrankungen therapeutisch auf eine immunmodulatorische Intervention ansprechen, die der inadäquaten Typ-1-IFN-Aktvierung entgegenwirkt, ist eine möglichst frühzeitige Diagnose von großer Bedeutung.
Schlüsselwörter
Typ-1-Interferon - Autoinflammation - Autoimmunität - angeborene Immunität - Genetik - Pathogenese - Nukleinsäure-ImmunitätPublikationsverlauf
Artikel online veröffentlicht:
08. Oktober 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14: 36-49
- 2 Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 2016; 16: 566-580
- 3 Lind NA, Rael VE, Pestal K. et al Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol 2021;
- 4 Lee-Kirsch MA. The Type I Interferonopathies. Annu Rev Med 2017; 68: 297-315
- 5 Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol 2021;
- 6 Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006; 6: 823-835
- 7 Rice GI, Forte GM, Szynkiewicz M. et al Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol 2013; 12: 1159-1169
- 8 Peschke K, Friebe F, Zimmermann N. et al Deregulated type I IFN response in TREX1-associated familial chilblain lupus. J Invest Dermatol 2014; 134: 1456-1459
- 9 Bienias M, Brück N, Griep C. et al Therapeutic Approaches to Type I Interferonopathies. Curr Rheumatol Rep 2018; 20: 32
- 10 König N, Fiehn C, Wolf C. et al Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 2017; 76: 468-472
- 11 Seo J, Kang J-A, Suh DI. et al Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol 2017; 139: 1396-1399.e12
- 12 Tüngler V, König N, Günther C. et al Response to: „JAK inhibition in STING-associated interferonopathy“ by Crow et al. Ann Rheum Dis 2016; 75: e76
- 13 Frémond M-L, Rodero MP, Jeremiah N. et al Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J Allergy Clin Immunol 2016; 138: 1752-1755
- 14 Zimmermann N, Wolf C, Schwenke R. et al Assessment of Clinical Response to Janus Kinase Inhibition in Patients With Familial Chilblain Lupus and TREX1 Mutation. JAMA Dermatol 2019; 155: 342-346
- 15 Sanchez GAM, Reinhardt A, Ramsey S. et al JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 2018; 128: 3041-3052
- 16 Vanderver A, Adang L, Gavazzi F. et al Janus Kinase Inhibition in the Aicardi-Goutières Syndrome. N Engl J Med 2020; 383: 986-989
- 17 Morand E, Merola JF, Tanaka Y. et al TYK2: an emerging therapeutic target in rheumatic disease. Nat Rev Rheumatol 2024; 20: 232-240
- 18 Gedik KC, Lamot L, Romano M. et al The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann Rheum Dis 2022; 81: 601-613
- 19 Crow YJ, Hayward BE, Parmar R. et al Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 2006; 38: 917-920
- 20 Crow YJ, Leitch A, Hayward BE. et al Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 2006; 38: 910-916
- 21 Rice GI, Bond J, Asipu A. et al Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. NatGenet 2009; 41: 829-832
- 22 Rice GI, Kasher PR, Forte GM. et al Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 2012; 44: 1243-1248
- 23 Rice GI, Del Toro DY, Jenkinson EM. et al Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 2014; 46: 503-509
- 24 Uggenti C, Lepelley A, Depp M. et al cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 2020; 52: 1364-1372
- 25 Rice G, Newman WG, Dean J. et al Heterozygous Mutations in TREX1 Cause Familial Chilblain Lupus and Dominant Aicardi-Goutieres Syndrome. Am J Hum Genet 2007; 80: 811-815
- 26 Lee-Kirsch MA, Chowdhury D, Harvey S. et al A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med 2007; 85: 531-537
- 27 Richards A, van den Maagdenberg AM, Jen JC. et al C-terminal truncations in human 3’-5’ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. NatGenet 2007; 39: 1068-1070
- 28 Liu Y, Jesus AA, Marrero B. et al Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014; 371: 507-518
- 29 Rutsch F, MacDougall M, Lu C. et al A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet 2015; 96: 275-282
- 30 Jang MA, Kim EK, Now H. et al Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 2015; 96: 266-274
- 31 Briggs TA, Rice GI, Daly S. et al Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 2011; 43: 127-131
- 32 Agarwal AK, Xing C, DeMartino GN. et al PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 2010; 87: 866-872
- 33 Brehm A, Liu Y, Sheikh A. et al Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 2015; 125: 4196-4211
- 34 Liu Y, Ramot Y, Torrelo A. et al Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 2012; 64: 895-907
- 35 Poli MC, Ebstein F, Nicholas SK. et al Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated Decay and Cause a Unique Immune Dysregulatory Syndrome. Am J Hum Genet 2018; 102: 1126-1142
- 36 Watkin LB, Jessen B, Wiszniewski W. et al COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 2015; 47: 654-660
- 37 Zhang X, Bogunovic D, Payelle-Brogard B. et al Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 2015; 517: 89-93
- 38 Meuwissen MEC, Schot R, Buta S. et al Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 2016; jem.20151529
- 39 Rodero MP, Tesser A, Bartok E. et al Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun 2017; 8: 2176
- 40 Wolf C, Brück N, Koss S. et al Janus kinase inhibition in complement component 1 deficiency. J Allergy Clin Immunol 2020; 146: 1439-1442.e5
- 41 Brown GJ, Cañete PF, Wang H. et al TLR7 gain-of-function genetic variation causes human lupus. Nature 2022; 605: 349-356
- 42 Wolf C, Lim EL, Mokhtari M. et al UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol 2024; eadi9769
- 43 Mishra H, Schlack-Leigers C, Lim EL. et al Disrupted degradative sorting of TLR7 is associated with human lupus. Sci Immunol 2024; 9: eadi9575