Subscribe to RSS
DOI: 10.1055/a-2361-3510
Stereoselective Synthesis of Polyketide Segments of Nemamide A and Euglenatides D–E
H.S and S.P thank the Indian Association for the Cultivation of Science and the University Grand Commission for their fellowship. The financial support from the Science and Engineering Research Board (Project no. CRG/2023/000479), India to carry out this work is gratefully acknowledged.
Abstract
A convergent strategy for the stereoselective synthesis of polyketide segments of hybrid natural products nemamide A and euglenatides D–E has been developed for the first time. The salient features of this gram-scale synthesis include Trost–Rychnovsky alkyne rearrangement, HWE olefination, regioselective epoxide ring opening, Prins–Ritter cyclization, and subsequent reductive cleavage of the substituted THP ring. The optimized route is modular and could be tunable to access the other polyketide counterparts of these families of metabolites.
Key words
natural products - nemamide A - euglenatides D–E - Trost–Rychnovsky alkyne rearrangement - Prins–Ritter cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2361-3510. Included are UV-Visible comparison (Figure-SF1), copies of NMR (1H & 13C), 2D NMR correlation data (COSY, HSQC, NOESY) and HRMS of representative compounds.
- Supporting Information
Publication History
Received: 08 June 2024
Accepted after revision: 03 July 2024
Accepted Manuscript online:
07 July 2024
Article published online:
18 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fischbach MA, Walsh CT. Chem. Rev. 2006; 106: 3468
- 1b Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L. Science 1991; 252: 675
- 1c Hoekman MF, Rientjes JM, Twisk J, Planta RJ, Princen HM, Mager WH. Gene 1994; 141: 309
- 1d Aharonowitz Y, Cohen G, Martin JF. Annu. Rev. Microbiol. 1992; 46: 461
- 1e Martin J. Appl. Microbiol. Biotechnol. 1998; 50: 1
- 1f van Wageningen AM, Kirkpatrick PN, Williams DH, Harris BR, Kershaw JK, Lennard NJ, Jones M, Jones SJ, Solenberg P. J. Chem. Biol. 1998; 5: 155
- 1g Motamedi H, Shafiee A. Eur. J. Biochem. 1998; 256: 528
- 1h Wu K, Chung L, Revill WP, Katz L, Reeves CD. Gene 2000; 251: 81
- 1i Schwecke T, Aparicio JF, Molnár I, König A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortés J, Lester JB. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 7839
- 1j Wheeler VC, Prodromou C, Pearl LH, Williamson R, Coutelle C. Gene 1996; 169: 251
- 1k Du L, Sánchez C, Chen M, Edwards DJ, Shen B. Chem. Biol. 2000; 7: 623
- 1l Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C, Julien B. Science 2000; 287: 640
- 1m Mishra BB, Tiwari VK. Eur. J. Med. Chem. 2011; 46: 4769
- 2a Du L, Sánchez C, Shen B. Metab. Eng. 2001; 3: 78
- 2b Abdalla MA, McGaw LJ. Molecules 2018; 23: 2080
- 3 Shou Q, Feng L, Long Y, Han J, Nunnery JK, Powell DH, Butcher RA. Nat. Chem. Biol. 2016; 12: 770
- 4 Aldholmi M, Ahmad R, Carretero-Molina D, Pérez-Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O’Connell M, Ganesan A. Angew. Chem. Int. Ed. 2022; 61: e202203175
- 5a Das S, Goswami RK. J. Org. Chem. 2014; 79: 9778
- 5b Mondal J, Sarkar R, Sen P, Goswami RK. Org. Lett. 2020; 22: 1188
- 5c Saha S, Paul D, Goswami RK. Chem. Sci. 2020; 11: 11259
- 5d Saha S, Auddy SS, Chatterjee A, Sen P, Goswami RK. Org. Lett. 2022; 24: 7113
- 5e Sharma H, Mondal J, Ghosh AK, Pal RR, Goswami RK. Chem. Sci. 2022; 13: 13403
- 6a Rychnovsky SD, Kim J. J. Org. Chem. 1994; 59: 2659
- 6b Trost BM, Kazmaier U. J. Am. Chem. Soc. 1992; 114: 7933
- 7 Mitsunobu O. Bull. Chem. Soc. Jpn. 1967; 40: 2380
- 8 Ahern TP, Fong HO, Langler RF, Mason PM. Can. J. Chem. 1980; 58: 878
- 9 Barney RJ, Richardson RM, Wiemer DF. J. Org. Chem. 2011; 76: 2875
- 10 Marcos R, Rodríguez-Escrich C, Herrerías CI, Pericàs MA. J. Am. Chem. Soc. 2008; 130: 16838
- 11 Lipshutz BH, Wilhelm RS, Floyd DM. J. Am. Chem. Soc. 1981; 103: 7672
- 12 Ziegler T, Dettmann R, Grabowski J. Synthesis 1999; 1661
- 13a Perron F, Albizati KF. J. Org. Chem. 1987; 52: 4128
- 13b Epstein OL, Rovis T. J. Am. Chem. Soc. 2006; 128: 16480
- 13c Yadav JS, Jayasudhan Reddy Y. Org. Lett. 2013; 15: 546
- 13d Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
- 13e Jasti R, Rychnovsky SD. J. Am. Chem. Soc. 2006; 128: 13640
- 14a Crosby SR, Harding JR, King CD, Parker GD, Willis CL. Org. Lett. 2002; 4: 577
- 14b Yadav JS, Reddy BV. S, Kumar GG. K. S. N, Reddy GM. Tetrahedron Lett. 2007; 48: 4903
- 14c Díez-Poza C, Barbero A. Org. Lett. 2021; 23: 8385
- 14d Zheng K, Liu X, Qin S, Xie M, Lin L, Hu C, Feng X. J. Am. Chem. Soc. 2012; 134: 17564
- 15 Han X, Peh G, Floreancig PE. Eur. J. Org. Chem. 2013; 1193
- 16 Bal BS, Childers WE, Pinnick HW. Tetrahedron 1981; 37: 2091