Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000089.xml
Ultraschall Med 2024; 45(05): 444-448
DOI: 10.1055/a-2368-9201
DOI: 10.1055/a-2368-9201
Editorial
Künstliche Intelligenz im Ultraschall: Pearls and Pitfalls im Jahr 2024
Article in several languages: English | deutschPublication History
Article published online:
06 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Gao Y, Zeng S, Xu X. et al. Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study. Lancet Digit Health 2022; 4 (03) e179-e187 DOI: 10.1016/S2589-7500(21)00278-8.
- 2 Moro F, Ciancia M, Zace D. et al. Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review. Int J Cancer DOI: 10.1002/ijc.35092.
- 3 Fu Y, Zhou J, Li J. Diagnostic performance of ultrasound-based artificial intelligence for predicting key molecular markers in breast cancer: A systematic review and meta-analysis. PLOS ONE 2024; 19 (05) e0303669 DOI: 10.1371/journal.pone.0303669.
- 4 Eun NL, Lee E, Park AY. et al. Artificial intelligence for ultrasound microflow imaging in breast cancer diagnosis. Ultraschall in Med Stuttg Ger 1980 2024; 45 (04) 412-417 DOI: 10.1055/a-2230-2455.
- 5 Vetter M, Waldner MJ, Zundler S. et al. Artificial intelligence for the classification of focal liver lesions in ultrasound – a systematic review. Ultraschall in Med. 2023; 44: 395-407 DOI: 10.1055/a-2066-9372.
- 6 Zhu Y, Meng Z, Wu H. et al. Deep learning radiomics of multimodal ultrasound for classifying metastatic cervical lymphadenopathy into primary cancer sites: a feasibility study. Ultraschall in Med Stuttg Ger 1980 2024; 45 (03) 305-315 DOI: 10.1055/a-2161-9369.
- 7 Fiorentino MC, Moccia S, Capparuccini M. et al. A regression framework to head-circumference delineation from US fetal images. Comput Methods Programs Biomed 2021; 198: 105771 DOI: 10.1016/j.cmpb.2020.105771.
- 8 Narang A, Bae R, Hong H. et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiol 2021; 6 (06) 1-9 DOI: 10.1001/jamacardio.2021.0185.
- 9 Wei Y, Yang B, Wei L. et al. Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network. Ultraschall in Med Stuttg Ger 1980 2023; DOI: 10.1055/a-2180-8405.
- 10 Piscaglia F, Stefanini B, Calliada F. et al. Ultrasound in clinical enviroments: Where are we standing?. Ultraschall in Med Stuttg Ger 1980 2023; 44 (04) 353-358 DOI: 10.1055/a-2095-5975.
- 11 Marcus E, Teuwen J. Artificial intelligence and explanation: How, why, and when to explain black boxes. Eur J Radiol 2024; 173 DOI: 10.1016/j.ejrad.2024.111393.
- 12 Novelli C, Taddeo M, Floridi L. Accountability in artificial intelligence: what it is and how it works. AI Soc 2023; DOI: 10.1007/s00146-023-01635-y.
- 13 Clusmann J, Ferber D, Wiest IC. et al. Prompt Injection Attacks on Large Language Models in Oncology. 2024; DOI: 10.48550/arXiv.2407.18981.
- 14 Samoilenko R. New prompt injection attack on ChatGPT web version. Reckless copy-pasting may lead to serious privacy issues in your chat.