Subscribe to RSS
DOI: 10.1055/a-2375-7634
Advances in the Intermolecular Asymmetric Allylic Functionalization of Unreactive Acyclic Alkenes
We gratefully acknowledge funding from National Natural Science Foundation of China (Nos. 22071111, 22401154 and 22371125)
![](https://www.thieme-connect.de/media/synlett/202504/lookinside/thumbnails/st-2024-a0196-a_10-1055_a-2375-7634-1.jpg)
Abstract
Allylic C(sp 3)–H functionalized architectures are not only widely present in natural products, pharmaceuticals, and functional organic materials, but also serve as versatile building blocks to furnish important functionalized molecules in synthetic chemistry. Accordingly, various strategies to access allylic functionalized alkenes in a stereoselective manner have been developed. However, chemo-, regio- and stereoselective intermolecular asymmetric allylic functionalization (AAF) of unreactive acyclic alkene (UAA) from readily available materials, representing a highly atom- and step-economic approach toward the generation of structural complexity, remains elusive and challenging. Herein, we review all intermolecular asymmetric catalyzed methods, with emphasis on the construction of chiral allylic units by activation of allylic C–H bonds of UAAs. Our analysis serves to document the considerable and rapid progress within the field, while also highlighting the limitations of current methods.
1 Introduction
2 Asymmetric Allylic Oxygenation
3 Asymmetric Allylic Amination
4 Asymmetric Allylic Carbonization
5 Asymmetric Allylic Sulfuration
6 Conclusion and Outlook
Key words
asymmetric - allylic functionalization - unreactive acyclic alkene - C–H activation - selectivityPublication History
Received: 15 June 2024
Accepted after revision: 29 July 2024
Accepted Manuscript online:
30 July 2024
Article published online:
29 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; 5863
- 1b Wang R, Luan Y, Ye M. Chin. J. Chem. 2019; 37: 720
- 1c Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
- 3a Alexakis A, Backvall JE, Krause N, Pamies O, Dieguez M. Chem. Rev. 2008; 108: 2796
- 3b Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
- 3c Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
- 3d Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
- 3e Lumbroso A, Cooke ML, Breit B. Angew. Chem. Int. Ed. 2013; 52: 1890
- 3f Sharma A, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 17983
- 3g Koschker P, Kähny M, Breit B. J. Am. Chem. Soc. 2015; 137: 3131
- 3h Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2020; 49: 2060
- 3i Fan L.-F, Liu R, Ruan X.-Y, Wang P.-S, Gong L.-Z. Nat. Synth. 2022; 1: 946
- 3j Ruan X.-Y, Wu D.-X, Li W.-A, Lin Z, Sayed M, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2024; 146: 12053
- 4a Farina V, Reeves JT, Senanayake CH, Song JJ. Chem. Rev. 2006; 106: 2734
- 4b Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 4c Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 4d Wilson RM, Danishefsky SJ. Angew. Chem. Int. Ed. 2010; 49: 6032
- 4e Brooks WH, Guida WC, Daniel KG. Curr. Top. Med. Chem. 2011; 11: 760
- 4f Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 4g Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
- 4h Panahi F, Bauer F, Breit B. Acc. Chem. Res. 2023; 56: 3676
- 5a Eames J, Watkinson M. Angew. Chem. Int. Ed. 2001; 40: 3567
- 5b Kwong H.-L, Yeung H.-L, Yeung C.-T, Lee W.-S, Lee C.-S, Wong W.-L. Coord. Chem. Rev. 2007; 251: 2188
- 5c Punniyamurthy T, Rout L. Coord. Chem. Rev. 2008; 252: 134
- 5d Collet F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061
- 5e Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011; 40: 1926
- 5f Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 5g Bayeh L, Tambar UK. ACS Catal. 2017; 7: 8533
- 5h Wang P.-Z, Chen J.-R, Xiao W.-J. J. Am. Chem. Soc. 2023; 145: 17527
- 5i Wang P.-S, Gong L.-Z. Chin. J. Chem. 2023; 41: 1841
- 6 Takenaka K, Akita M, Tanigaki Y, Takizawa S, Sasai H. Org. Lett. 2011; 13: 3506
- 7 Wang PS, Liu P, Zhai YJ, Lin HC, Han ZY, Gong LZ. J. Am. Chem. Soc. 2015; 137: 12732
- 8 Ammann SE, Liu W, White MC. Angew. Chem. Int. Ed. 2016; 55: 9571
- 9 Wang PS, Shen ML, Wang TC, Lin HC, Gong LZ. Angew. Chem. Int. Ed. 2017; 56: 16032
- 10 Ye L, Tian Y, Meng X, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2020; 59: 1129
- 11 Chai Z, Rainey TJ. J. Am. Chem. Soc. 2012; 134: 3615
- 12a Andrus MB, Zhou Z. J. Am. Chem. Soc. 2002; 124: 8806
- 12b Gokhale AS, Minidis AB. E, Pfaltz A. Tetrahedron Lett. 1995; 36: 1831
- 12c Sekar G, DattaGupta A, Singh VK. J. Org. Chem. 1998; 63: 2961
- 12d Ginotra SK, Singh VK. Org. Biomol. Chem. 2006; 4: 4370
- 12e Kawasaki K, Tsumura S, Katsuki T. Synlett 1995; 1245
- 12f Hoang VD. M, Reddy PA. N, Kim T.-J. Organometallics 2008; 27: 1026
- 12g Muzart J. J. Mol. Catal. 1991; 64: 381
- 12h Levina A, Muzart J. Tetrahedron: Asymmetry 1995; 6: 147
- 13 Clark JS, Roche C. Chem. Commun. 2005; 5175
- 14 Lin C, Zhang J, Sun Z, Guo Y, Chong Q, Zhang Z, Meng F. Angew. Chem. Int. Ed. 2024; e202405290
- 15 Kharasch M, Sosnovsky G. J. Am. Chem. Soc. 1959; 81: 5819
- 16 Gokhale AS. Minidis A. B. E, Pfaltz A. Tetrahedron Lett. 1995; 36: 1831
- 17 Andrus MB, Argade AB, Chen X, Pamment MG. Tetrahedron Lett. 1995; 36: 2945
- 18 Zhou Z, Andrus MB. Tetrahedron Lett. 2012; 53: 4518
- 19 Ginotra SK, Singh VK. Org. Biomol. Chem. 2006; 4: 4370
- 20 Zhang B, Zhu S.-F, Zhou Q.-L. Tetrahedron Lett. 2013; 54: 2665
- 21 Covell DJ, White MC. Angew. Chem. Int. Ed. 2008; 47: 6448
- 22 Agudo R, Roiban G.-D, Reetz MT. ChemBioChem 2012; 13: 1465
- 23 Neufeld K, Henssen B, Pietruszka J. Angew. Chem. Int. Ed. 2014; 53: 13253
- 24a Shaik S, Cohen S, Visser SP, Sharma PK, Kumar D, Kozuch S, Ogliaro F, Danovich D. Eur. J. Inorg. Chem. 2004; 207
- 24b Spinello A, Ritacco I, Magistrato A. Catalysts 2019; 9: 81
- 25a Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
- 25b Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
- 26 Kohmura Y, Kawasaki K, Katsuki T. Synlett 1997; 1456
- 27 Du H, Yuan W, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 11688
- 28 Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2008; 130: 8590
- 29 Farr CM. B, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik M.-H, Blakey SB. J. Am. Chem. Soc. 2020; 142: 13996
- 30a Sharpless KB, Hori T, Truesdale LK, Dietrich CO. J. Am. Chem. Soc. 1976; 98: 269
- 30b Liang C, Collet F, Robert-Peillard F, Muller P, Dodd RH, Dauban P. J. Am. Chem. Soc. 2008; 130: 343
- 30c Sharma A, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 17983
- 30d Cheng Q, Chen J, Lin S, Ritter T. J. Am. Chem. Soc. 2020; 142: 17287
- 30e Jia Z.-J, Gao S, Arnold FH. J. Am. Chem. Soc. 2020; 142: 10279
- 30f Teh WP, Obenschain DC, Black BM, Michael FE. J. Am. Chem. Soc. 2020; 142: 16716
- 30g Ide T, Feng K, Dixon CF, Teng D, Clark JR, Han W, Wendell CI, Koch V, White MC. J. Am. Chem. Soc. 2021; 143: 14969
- 30h Wang DJ, Targos K, Wickens ZK. J. Am. Chem. Soc. 2021; 143: 21503
- 30i Liu MS, Du HW, Shu W. Chem. Sci. 2022; 13: 1003
- 31 Liu R, Shen M.-L, Fan L.-F, Zhou X.-L, Wang P.-S, Gong L.-Z. Angew. Chem. Int. Ed. 2023; 62: e202211631
- 32 Xu P, Xie J, Wang D.-S, Zhang XP. Nat. Chem. 2023; 15: 498
- 33a Cuthbertson JD, MacMillan DW. C. Nature 2015; 519: 74
- 33b Zhou R, Liu H, Tao H, Yu X, Wu J. Chem. Sci. 2017; 8: 4654
- 33c Spielvogel EH, Stevenson BG, Stringer MJ, Hu Y, Fredin LA, Swierk JR. J. Org. Chem. 2022; 87: 223
- 33d Liu K, Wang Z, Kunzel AN, Layh M, Studer A. Angew. Chem. Int. Ed. 2023; 62: e202303473
- 34 Wang Y, Zhu J, Guo R, Lindberg H, Wang Y.-M. Chem. Sci. 2020; 11: 12316
- 35 Lin H.-C, Wang P.-S, Tao Z.-L, Chen Y.-G, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2016; 138: 14354
- 36a Wang TC, Han ZY, Wang PS, Lin HC, Luo SW, Gong LZ. Org. Lett. 2018; 20: 4740
- 36b Lin HC, Xie PP, Dai ZY, Zhang SQ, Wang PS, Chen YG, Wang TC, Hong X, Gong LZ. J. Am. Chem. Soc. 2019; 141: 5824
- 36c Fan L.-F, Luo S.-W, Chen S.-S, Wang T.-C, Wang P.-S, Gong LZ. Angew. Chem. Int. Ed. 2019; 58: 16806
- 36d Wang T.-C, Wang P.-S, Gong L.-Z. Sci. China Chem. 2020; 63: 454
- 36e Dai Z.-Y, Wang P.-S, Gong L.-Z. Chem. Commun. 2021; 57: 6748
- 37 Morales-Rivera CA, Floreancig PE, Liu P. J. Am. Chem. Soc. 2017; 139: 17935
- 38 Wang T.-C, Fan L.-F, Shen Y, Wang P.-S, Gong L.-Z. J. Am. Chem. Soc. 2019; 141: 10616
- 39 Li L.-L, Tao Z.-L, Han Z.-Y, Gong L.-Z. Org. Lett. 2017; 19: 102
- 40a Kubiak RW. Org. Lett. 2016; 18: 3118
- 40b Vaitla J, Boni YT, Davies HM. L. Angew. Chem. Int. Ed. 2020; 59: 7397
- 41 Li J, Zhang Z, Wu L, Zhang W, Chen P, Lin Z, Liu G. Nature 2019; 574: 516
- 42a Wang PS, Lin HC, Zhai YJ, Han ZY, Gong LZ. Angew. Chem. Int. Ed. 2014; 53: 12218
- 42b Wang PS, Liu P, Zhai YJ, Lin HC, Han ZY, Gong LZ. J. Am. Chem. Soc. 2015; 137: 12732
- 42c Wang PS, Shen ML, Wang TC, Lin HC, Gong LZ. Angew. Chem. Int. Ed. 2017; 56: 16032
- 42d Lin HC, Xie PP, Dai ZY, Zhang SQ, Wang PS, Chen YG, Wang TC, Hong X, Gong LZ. J. Am. Chem. Soc. 2019; 141: 5824
- 42e Wang PS, Gong LZ. Acc. Chem. Res. 2020; 53: 2841
- 43 Wang T.-C, Zhu L, Luo S, Nong Z.-S, Wang P.-S, Gong L.-Z. J. Am. Chem. Soc. 2021; 143: 20454
- 44 Nong Z.-S, Zhu L, Wang T.-C, Fan L.-F, Wang P.-S, Gong L.-Z. Nat. Synth. 2022; 1: 487
- 45 Wei J.-H, Jin Y.-X, Wang P.-S, Gong L.-Z. Synlett 2023; 34: 2411
- 46 Nong Z.-S, Chen X.-R, Wang P.-S, Hong X, Gong L.-Z. Angew. Chem. Int. Ed. 2023; 62: e202312547
- 47a Mei T.-S, Patel HH, Sigman MS. Nature 2014; 508: 340
- 47b Liu J, Yuan Q, Toste FD, Sigman MS. Nat. Chem. 2019; 11: 710
- 47c Ross SP, Rahman AA, Sigman MS. J. Am. Chem. Soc. 2020; 142: 10516
- 47d Dhungana RK, Sapkota RR, Niroula D, Giri R. Chem. Sci. 2020; 11: 9757
- 47e Li Y, Wu D, Cheng H.-G, Yin G. Angew. Chem. Int. Ed. 2020; 59: 7990
- 48 Chen YW, Liu Y, Lu HY, Lin GQ, He ZT. Nat. Commun. 2021; 12: 5626
- 49 Bayeh L, Le PQ, Tambar UK. Nature 2017; 547: 196
For other substrates, see:
For direct use of carboxylic acid as substrate, see: