Subscribe to RSS
DOI: 10.1055/a-2376-6463
Recent Advances in Asymmetric Addition Reactions to Isatins
We are grateful for the financial support from the National Natural Science Foundation of China (NSFC; 92156005 and 21931006) and the Open Research Fund of State Key Laboratory of Southwestern Chinese Medicine Resources (SKLTCM2022018).

Abstract
The 3-substituted-3-hydroxy-2-oxindole scaffolds are not only widely encountered in bioactive compounds but also serve as versatile building blocks for the construction of diverse valuable architectures. Although numerous synthetic methodologies have been developed over the past decades, the asymmetric addition of nucleophiles or their equivalents to isatin substrates has proved to be one of the most efficient strategies for the synthesis of chiral 3-substituted-3-hydroxy-2-oxindoles. This Short Review aims to summarize the significant progress achieved in this field in recent years, with particular attention paid to reaction development, mechanism, and stereo-induction models.
1 Introduction
2 Asymmetric Alkylation of Isatins
3 Asymmetric Alkenylation and Dienylation of Isatins
4 Asymmetric Alkynylation of Isatins
5 Asymmetric Allenylation of Isatins
6 Asymmetric Arylation of Isatins
7 Asymmetric Annulations of Isatins
8 Conclusions and Outlooks
Key words
3-substituted-3-hydroxy-2-oxindole - isatin - asymmetric addition reaction - organocatalysis - metal catalysisPublication History
Received: 03 July 2024
Accepted after revision: 30 July 2024
Accepted Manuscript online:
30 July 2024
Article published online:
22 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
- 1b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 1c Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 2a Balk-Bindseil W, Helmke E, Weyland H, Laatsch H. Liebigs Ann. 1995; 7: 1291
- 2b Ma Y.-M, Liang X.-A, Kong Y, Jia B. J. Agric. Food Chem. 2016; 64: 6659
- 3a Kamano Y, Zhang H, Ichihara Y, Kizu H, Komiyama K, Pettit GR. Tetrahedron Lett. 1995; 36: 2783
- 3b Zhang H.-P, Kamano Y, Ichihara Y, Kizu H, Komiyama K, Itokawa H, Pettit GR. Tetrahedron 1995; 51: 5523
- 3c Peng J, Lin T, Wang W, Xin Z, Zhu T, Gu Q, Li D. J. Nat. Prod. 2013; 76: 1133
- 3d Long S, Resende DI. S. P, Kijjoa A, Silva AM. S, Pina A, Fernández-Marcelo T, Vasconcelos MH, Sousa E, Pinto MM. M. Mar. Drugs 2018; 16: 261
- 4 Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, Abaan OD, Chou T.-H, Dakshanamurthy S, Brown ML, Üren A, Toretsky JA. Nat. Med. 2009; 15: 750
- 5a Nagamine J, Nagata R, Seki H, Nomura-Akimaru N, Ueki Y, Kumagai K, Taiji M, Noguchi H. J. Endocrinol. 2001; 171: 481
- 5b Nagamine J, Kawamura T, Tokunaga T, Hume EW, Nagata R, Nakagawa T, Taiji M. Comb. Chem. High Throughput Screening 2006; 9: 187
- 6 Sarciron ME, Audin P, Delabre I, Gabrion C, Petavy AF, Paris J. J. Pharm. Sci. 1993; 82: 605
- 7a Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 7b Kumar A, Chimni SS. RSC Adv. 2012; 2: 9748
- 8a Ashimori A, Matsuura T, Overman LE, Poon DJ. J. Org. Chem. 1993; 58: 6949
- 8b Dounay AB, Hatanaka K, Kodanko JJ, Oestreich M, Overman LE, Pfeifer LA, Weiss MM. J. Am. Chem. Soc. 2003; 125: 6261
- 8c Busacca CA, Grossbach D, So RC, O’Brie EM, Spinelli EM. Org. Lett. 2003; 5: 595
- 8d Pinto A, Jia Y, Neuville L, Zhu J. Chem. Eur. J. 2007; 13: 961
- 9a Ishimaru T, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. J. Am. Chem. Soc. 2006; 128: 16488
- 9b Shen K, Liu X, Wang G, Lin L, Feng X. Angew. Chem. Int. Ed. 2011; 50: 4684
- 9c Jiang S.-Y, Shi J, Wang W, Sun Y.-Z, Wu W, Song J.-R, Yang X, Hao G.-F, Pan W.-D, Ren H. ACS Catal. 2023; 13: 3085
- 10a Retini M, Bergonzini G, Melchiorre P. Chem. Commun. 2012; 48: 3336
- 10b Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 971
- 11a Shu VA, Eni DB, Ntie-Kang F. Mol. Diversity. 2024
- 11b Sadeghian Z, Bayat M. Curr. Org. Chem. 2022; 26: 756
- 11c Nath P, Mukherjee A, Mukherjee S, Banerjee S, Das S, Banerjee S. Mini-Rev. Med. Chem. 2021; 21: 1096
- 12a Gotgi NM, Jain JS, Pal R, Ghosh D. Org. Biomol. Chem. 2024; 22: 3352
- 12b Zhang S, Huang D, Wu J, Wang Z. Asian J. Org. Chem. 2023; 12: e202200591
- 12c Kaur J, Kaur S, Kaur K. ChemistrySelect 2024; 9: e202305181
- 13a Funabashi K, Jachmann M, Kanai M, Shibasaki M. Angew. Chem. Int. Ed. 2003; 42: 5489
- 13b Vila C, Del Campo A, Blay G, Pedro JR. Catalysts 2017; 7: 387
- 13c Wang R.-H, Li Y.-L, He H.-J, Xiao Y.-C, Chen F.-E. Chem. Eur. J. 2021; 27: 4302
- 14 Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
- 15 Hanhan NV, Tang YC, Tran NT, Franz AK. Org. Lett. 2012; 14: 2218
- 16a Cao Z.-Y, Zhang Y, Ji C.-B, Zhou J. Org. Lett. 2011; 13: 6398
- 16b Cao Z.-Y, Jiang J.-S, Zhou J. Org. Biomol. Chem. 2016; 14: 5500
- 17 Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Angew. Chem. Int. Ed. 2021; 60: 1992
- 18a Hanhan NV, Sahin AH, Chang TW, Fettinger JC, Franz AK. Angew. Chem. Int. Ed. 2010; 49: 744
- 18b Aikawa K, Mimura S, Numata Y, Mikami K. Eur. J. Org. Chem. 2011; 62
- 19a Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 19b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 19c Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
- 20 Liu Y.-L, Zhou J. Chem. Commun. 2012; 48: 1919
- 21 Liu Y.-L, Liao F.-M, Niu Y.-F, Zhao X.-L, Zhou J. Org. Chem. Front. 2014; 1: 742
- 22a Subba Reddy UV, Chennapuram M, Seki K, Seki C, Anusha B, Kwon E, Okuyama Y, Uwai K, Tokiwa M, Takeshita M, Nakano H. Eur. J. Org. Chem. 2017; 3874
- 22b Wang J, Deng Z.-X, Wang C.-M, Xia P.-J, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2018; 20: 7535
- 22c Kon K, Kohari Y, Murata M. Tetrahedron Lett. 2019; 60: 415
- 22d Cruz-Hernández C, Hernández-González PE, Juaristi E. Synthesis 2018; 50: 1827
- 22e Zou Y, Li C.-Y, Xiang M, Li W.-S, Zhang J, Wan W.-J, Wang L.-X. Tetrahedron Lett. 2022; 97: 153780
- 22f Faragó T, Remete AM, Szatmári I, Ambrus R, Palkó M. RSC Adv. 2023; 13: 19356
- 23 Laina-Martín V, Humbrías-Martín J, Fernández-Salas JA, Alemán J. Chem. Commun. 2018; 54: 2781
- 24 Zhu B, Zhang W, Lee R, Han Z, Yang W, Tan D, Huang K.-W, Jiang Z. Angew. Chem. Int. Ed. 2013; 52: 6666
- 25 Zhang X, Zhou L, Mahmood Q, Zhao M, Wang X, Wang Q. Synlett 2019; 30: 573
- 26a Hrishikesh DV, Annadate RA, Pansare SV. ACS Omega 2023; 8: 3190
- 26b Tang Q, Lin L, Ji J, Hu H, Liu X, Feng X. Chem. Eur. J. 2017; 23: 16447
- 27 Xu J, Song Y, He J, Dong S, Lin L, Feng X. Angew. Chem. Int. Ed. 2021; 60: 14521
- 28 Cao S, Li J, Yan T, Han J, He Z. Org. Chem. Front. 2022; 9: 643
- 29 Liu Y, Liu X, Li J, Zhao X, Qiao B, Jiang Z. Chem. Sci. 2018; 9: 8094
- 30 Li F, Tian D, Fan Y, Lee R, Lu G, Yin Y, Qiao B, Zhao X, Xiao Z, Jiang Z. Nat. Commun. 2019; 10: 1774
- 31 Tan Z, Zhu S, Liu Y, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202203374
- 32 Sun X, Li K, Zhao S, Zha Z, Wang Z. Chin. Chem. Lett. 2022; 33: 5106
- 33a Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
- 33b Qian J.-Y, Wang C.-C, Sha F, Wu X.-Y. RSC Adv. 2012; 2: 6042
- 33c Duan Z, Zhang Z, Qian P, Han J, Pan Y. RSC Adv. 2013; 3: 10127
- 33d He H.-J, Wang R.-Q, Wan L.-X, Zhou L.-Y, Li H.-Y, Li G.-B, Xiao Y.-C, Chen F.-E. J. Org. Chem. 2023; 88: 3802
- 33e Almeida WP, Coelho F. ACS Catal. 2023; 13: 3864
- 34a Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 34b Xie P, Huang Y. Org. Biomol. Chem. 2015; 13: 8578
- 34c Zhong N.-J, Wang Y.-Z, Cheng L, Wang D, Liu L. Org. Biomol. Chem. 2018; 16: 5214
- 34d Chen Z.-C, Chen Z, Du W, Chen Y.-C. Chem. Rec. 2020; 20: 541
- 34e Sivanandan ST, Nair DK, Namboothiri IN. N. Org. Biomol. Chem. 2023; 21: 6243
- 35a Back TG, Rankic DA, Sorbetti JM, Wulff JE. Org. Lett. 2005; 7: 2377
- 35b Schuler M, Duvvuru D, Retailleau P, Betzer J.-F, Marinetti A. Org. Lett. 2009; 11: 4406
- 35c Satpathi B, Wagulde SV, Ramasastry SS. V. Chem. Commun. 2017; 53: 8042
- 36 Chen Z.-C, Ouyang Q, Du W, Chen Y.-C. J. Am. Chem. Soc. 2024; 146: 6422
- 37 Xiao B.-X, Jiang B, Yan R.-J, Zhu J.-X, Xie K, Gao X.-Y, Ouyang Q, Du W, Chen Y.-C. J. Am. Chem. Soc. 2021; 143: 4809
- 38 Chen P, Tan S.-Z, Zhu L, Ouyang Q, Jia Z.-J, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2023; 62: e202301519
- 39 Tan S.-Z, Chen P, Zhu L, Gan M.-Q, Ouyang Q, Du W, Chen Y.-C. J. Am. Chem. Soc. 2022; 144: 22689
- 40 Jiang B, Wang H.-T, Chen Z.-C, Du W, Chen Y.-C. ACS Catal. 2024; 14: 628
- 41 Xu N, Gu D.-W, Zi J, Wu X.-Y, Guo X.-X. Org. Lett. 2016; 18: 2439
- 42 Chen Q, Tang Y, Huang T, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2016; 55: 5286
- 43a He H, Yang Z, Chai Y, Wu R, Chen P, Zhou J, Zhou H. Org. Lett. 2021; 23: 5739
- 43b Chen L, Huang G, Liu M, Huang Z, Chen FE. Adv. Synth. Catal. 2018; 360: 3497
- 43c Qu H, Chen Y, Ceng X, Tang P, Wang H, Chen F. Asian J. Org. Chem. 2022; 11: e202200188
- 43d Prieto E, Martin JD, Nieto J, Andres C. Org. Biomol. Chem. 2023; 21: 6940
- 43e Jiang D, Tang P, Tan Q, Yang Z, He L, Zhang M. Chem. Eur. J. 2020; 26: 15830
- 43f Chen J.-F, Li C. Org. Lett. 2020; 22: 4686
- 43g Huang R.-Z, Ma Z.-C, Huang Y, Zhao Y. J. Org. Chem. 2023; 88: 7755
- 44 Moskowitz M, Wolf C. Angew. Chem. Int. Ed. 2019; 58: 3402
- 45a Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 45b Kaneko S, Kumatabara Y, Shirakawa S. Org. Biomol. Chem. 2016; 14: 5367
- 45c Lee H.-J, Maruoka K. Chem. Rec. 2023; 23: e202200286
- 46 Paria S, Lee H.-J, Maruoka K. ACS Catal. 2019; 9: 2395
- 47 Sun X, Xiong C, Zhou F, Liang K, Wu C, Rao X, Chen Q. J. Org. Chem. 2023; 88: 7454
- 48a Chu W.-D, Zhang Y, Wang J. Catal. Sci. Technol. 2017; 7: 4570
- 48b Wang X, Chen X, Lin W, Li P, Li W. Adv. Synth. Catal. 2022; 364: 1212
- 48c Xiao W, Wu J. Org. Chem. Front. 2022; 9: 5053
- 49a Cowen BJ, Saunders LB, Miller SJ. J. Am. Chem. Soc. 2009; 131: 6105
- 49b Hashimoto T, Sakata K, Tamakuni F, Dutton MJ, Maruoka K. Nat. Chem. 2013; 5: 240
- 49c Mbofana CT, Miller SJ. J. Am. Chem. Soc. 2014; 136: 3285
- 49d Bang J, Kim H, Kim J, Yu CM. Org. Lett. 2015; 17: 1573
- 50 Wang G, Liu X, Chen Y, Yang J, Li J, Lin L, Feng X. ACS Catal. 2016; 6: 2482
- 51 Tang Y, Xu J, Yang J, Lin L, Feng X, Liu X. Chem 2018; 4: 1658
- 52 Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 14817
- 53a Barroso S, Blay G, Cardona L, FernKndez I, GarcLa B, Pedro JR. J. Org. Chem. 2004; 69: 6821
- 53b Tokunaga T, Hume WE, Umezome T, Okazaki K, Ueki Y, Kumagai K, Hourai S, Nagamine J, Seki H, Taiji M, Noguchi H, Nagata R. J. Med. Chem. 2001; 44: 4641
- 53c Hewawasam P, Erway M, Moon SL, Knipe J, Weiner H, Boissard CG, Post-Munson DJ, Gao Q, Huang S, Gribkoff VK, Meanwell NA. J. Med. Chem. 2002; 45: 1487
- 54a Shintani R, Inoue M, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 3353
- 54b Lai H, Huang Z, Wu Q, Qin Y. J. Org. Chem. 2009; 74: 283
- 54c Zhuang Y, He Y, Zhou Z, Xia W, Cheng C, Wang M, Chen B, Zhou Z, Pang J, Qiu L. J. Org. Chem. 2015; 80: 6968
- 54d Yamamoto Y, Yohda M, Shirai T, Ito H, Miyaura N. Chem. Asian J. 2012; 7: 2446
- 54e Liu Z, Gu P, Shi M, McDowell P, Li G. Org. Lett. 2011; 13: 2314
- 54f Guo W, Zhan S, Yang H, Gu Z. Org. Lett. 2023; 25: 3281
- 55 Huang Y, Huang R.-Z, Zhao Y. J. Am. Chem. Soc. 2016; 138: 6571
- 56a Hanhan NV, Sahin AH, Chang TW, Fettinger JC, Franz AK. Angew. Chem. Int. Ed. 2010; 49: 744
- 56b Chauhan P, Chimni SS. Chem. Eur. J. 2010; 16: 7709
- 56c Deng J, Zhang S, Ding P, Jiang H, Wang W, Li J. Adv. Synth. Catal. 2010; 352: 833
- 56d Liu G, Zhuo M, An D, Zhang G, Qin X, Gao J, Fan Y, Zhang S. Asian J. Org. Chem. 2017; 6: 807
- 56e Montesinos-Magraner M, Vila C, Blay G, Fernandez I, Munoz MC, Pedro JR. Org. Lett. 2017; 19: 1546
- 57a Kaur J, Kumar A, Chimni SS. Tetrahedron Lett. 2014; 55: 213
- 57b Kaur J, Kumar A, Chimni SS. RSC Adv. 2014; 4: 62367
- 58 Wang L, Chen Z, Jiang H, Zhang J, Jin Y. Chirality 2022; 34: 977
- 59 Chen Z, Wang L, Tian W, Jin Y, Qin X. Mol. Diversity 2023; 28: 1733
- 60a Cui H.-L, Tanaka F. Chem. Eur. J. 2013; 19: 6213
- 60b Cui H.-L, Chouthaiwale PV, Yin F, Tanaka F. Asian J. Org. Chem. 2016; 5: 153
- 60c Cui H.-L, Chouthaiwale PV, Yin F, Tanaka F. Org. Biomol. Chem. 2016; 14: 1777
- 61a Parasuraman P, Begum Z, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Tokiwa S, Takeshita M, Nakano H. RSC Adv. 2020; 10: 17486
- 61b Parasuraman P, Ganesan D, Begum Z, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Tokiwa S, Takeshita M, Nakano H. Chirality 2021; 33: 454
- 62 Sun L.-H, Shen L.-T, Ye S. Chem. Commun. 2011; 47: 10136
- 63 Dugal-Tessier J, O’Bryan EA, Schroeder TB, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 4963
- 64 Li J.-L, Sahoo B, Daniliuc C.-G, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10515
- 65 Lin Y, Yang L, Deng Y, Zhong G. Chem. Commun. 2015; 51: 8330
- 66a Xiao Z, Yu C, Li T, Wang X.-S, Yao C. Org. Lett. 2014; 16: 3632
- 66b Yan J, Shi K, Zhao C, Ding L, Jiang S, Yang L, Zhong G. Chem. Commun. 2018; 54: 1567
- 67 Wang X.-N, Zhang Y.-Y, Ye S. Adv. Synth. Catal. 2010; 352: 1892
For selected reviews, see:
For selected previous reviews, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For selected examples and recent reviews, see:
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see: