CC BY-NC-ND 4.0 · Ultrasound Int Open 2024; 10: a23786926
DOI: 10.1055/a-2378-6926
Review

Ultrasound elastography: a brief clinical history of an evolving technique

1   Department General Internal Medicine, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland
,
Yi Dong
2   Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (Ringgold ID: RIN91603)
,
3   Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Ringgold ID: RIN66375)
,
Mathias Fink
4   Institut Langevin, PSL University, Paris, France (Ringgold ID: RIN316338)
,
5   Internal Medicine, Krankenhaus Märkisch-Oderland GmbH, Strausberg, Germany (Ringgold ID: RIN116976)
,
6   Gastroenterology, Sana Hospital Lichtenberg, Berlin, Germany (Ringgold ID: RIN40656)
,
7   R&D Department, Echosens SA, Paris, France (Ringgold ID: RIN214820)
,
Sugimoto Tsuneyoshi
8   Graduate School of Engineering, Toin University of Yokohama, Yokohama, Japan (Ringgold ID: RIN57943)
,
Mickael Tanter
9   Institute Physics for Medicine, PSL University, Paris, France (Ringgold ID: RIN316338)
› Author Affiliations

Abstract

The history of the emerging elastographic technique is presented. Ultrasound imaging of elasticity and tissue strain has gained clinical acceptance as an established technique useful in routine daily clinical practice.



Publication History

Received: 19 March 2024

Accepted: 21 July 2024

Article published online:
09 October 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

Bibliographical Record
Christoph F. Dietrich, Yi Dong, Xin-Wu Cui, Mathias Fink, Christian Jenssen, Kathleen Moeller, Laurent Sandrin, Sugimoto Tsuneyoshi, Mickael Tanter. Ultrasound elastography: a brief clinical history of an evolving technique. Ultrasound Int Open 2024; 10: a23786926.
DOI: 10.1055/a-2378-6926
 
  • References

  • 1 Dietrich CF, Cantisani V. Current status and perspectives of elastography. Eur J Radiol 2014; 83: 403-404
  • 2 Bamber JC. Comment on new technology--ultrasound elastography. Ultraschall Med 2008; 29: 319-320
  • 3 Dietrich CF, Bolondi L, Duck F, Evans DH, Ewertsen C, Fraser AG. et al. History of Ultrasound in Medicine from its birth to date (2022), on occasion of the 50 Years Anniversary of EFSUMB. A publication of the European Federation of Societies for Ultrasound In Medicine and Biology (EFSUMB), designed to record the historical development of medical ultrasound. Med Ultrason 2022; 24: 434-450
  • 4 Merz E, Evans DH, Dong Y, Jenssen C, Dietrich CF. History of ultrasound in obstetrics and gynaecology from 1971 to 2021 on occasion of the 50 years anniversary of EFSUMB. Med Ultrason 2023; 25: 175-188
  • 5 Jenssen C, Ewertsen C, Piscaglia F, Dietrich CF, Gilja OH, Sidhu PS. et al. 50th years anniversary of EFSUMB: Initial roots, maturation, and new shoots. Ultraschall Med 2022; 43: 227-231
  • 6 Christian Jenssen CE, Christoph F. Dietrich, Alina Popescu, Lynne Rudd European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB), London, United Kingdom. 50 Years of EFSUMB. Past, Present and Future. 2022
  • 7 Dietrich CF, Greis C. History of contrast enhanced ultrasound. In: Lyshchik A, Dietrich CF, Sidhu P, Wilson S, eds. Fundamentals in contrast enhanced ultrasound (CEUS). Philadelphia: Elsevier; 2019. 2019. 4-8
  • 8 Nielsen MB, Sogaard SB, Bech Andersen S, Skjoldbye B, Hansen KL, Rafaelsen S. et al. Highlights of the development in ultrasound during the last 70 years: A historical review. Acta Radiol 2021; 62: 1499-1514
  • 9 Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8: 1521-1549
  • 10 Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013; 94: 487-495
  • 11 Dewall RJ. Ultrasound elastography: principles, techniques, and clinical applications. Crit Rev Biomed Eng 2013; 41: 1-19
  • 12 Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 1, Principles and Techniques. AJR American journal of roentgenology 2015; 205: 22-32
  • 13 King AL, PLawton RW. Elasticity of Body Tissues: Chicago Year Book Publ. 1950 u. 1960, Medical Physics, Vol II, Vol.III; 1960.
  • 14 Hartung C. Zur Biomechanik weicher Gewebe. Düsseldorf: VDI-Verlag; 1975
  • 15 Mol CR, Breddels PA. Ultrasound velocity in muscle. J Acoust Soc Am 1982; 71: 455-461
  • 16 Levinson SF. Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory. J Biomech 1987; 20: 251-260
  • 17 O’Donnell M, Mimbs JW, Miller JG. Relationship between collagen and ultrasonic backscatter in myocardial tissue. J Acoust Soc Am 1981; 69: 580-588
  • 18 Madaras EI, Perez J, Sobel BE, Mottley JG, Miller JG. Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo. J Acoust Soc Am 1988; 83: 762-769
  • 19 Wear KA, Milunski MR, Wickline SA, Perez JE, Sobel BE, Miller JG. Contraction-related variation in frequency dependence of acoustic properties of canine myocardium. J Acoust Soc Am 1989; 86: 2067-2072
  • 20 Hete B, Shung KK. A study of the relationship between mechanical and ultrasonic properties of dystrophic and normal skeletal muscle. Ultrasound Med Biol 1995; 21: 343-352
  • 21 Zhang D, Gong X, Ye S. Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics. J Acoust Soc Am 1996; 99: 2397-2402
  • 22 Krouskop TA, Dougherty DR, Vinson FS. A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. Journal of rehabilitation research and development 1987; 24: 1-8
  • 23 Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857
  • 24 Muthupillai R, Ehman RL. Magnetic resonance elastography. Nat Med 1996; 2: 601-603
  • 25 Muthupillai R, Rossman PJ, Lomas DJ, Greenleaf JF, Riederer SJ, Ehman RL. Magnetic resonance imaging of transverse acoustic strain waves. Magn Reson Med 1996; 36: 266-274
  • 26 Manduca A, Muthupillai R. Visualization of Tissue Elasticity by Magnetic Resonance Elastography. Lecture Notes in Computer Science Bd 1131 1996; 63-68
  • 27 Manduca A. Multispectral image visualization with nonlinear projections. IEEE transactions on image processing: a publication of the IEEE Signal Processing Society 1996; 5: 1486-1490
  • 28 Catheline S, Gennisson JL, Delon G, Fink M, Sinkus R, Abouelkaram S. et al. Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J Acoust Soc Am 2004; 116: 3734-3741
  • 29 Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E. et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med 2005; 53: 372-387
  • 30 Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 2005; 23: 159-165
  • 31 Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58: 1135-1144
  • 32 Robert B, Sinkus R, Gennisson JL, Fink M. Application of DENSE-MR-elastography to the human heart. Magn Reson Med 2009; 62: 1155-1163
  • 33 Salameh N, Larrat B, Abarca-Quinones J, Pallu S, Dorvillius M, Leclercq I. et al. Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology. 2009; 253: 90-97
  • 34 Larrat B, Pernot M, Aubry JF, Dervishi E, Sinkus R, Seilhean D. et al. MR-guided transcranial brain HIFU in small animal models. Phys Med Biol 2010; 55: 365-388
  • 35 Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 2011; 56: R1-R29
  • 36 Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134
  • 37 Cespedes I, Ophir J, Ponnekanti H, Maklad N. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 1993; 15: 73-88
  • 38 Ponnekanti H, Ophir J, Cespedes I. Ultrasonic imaging of the stress distribution in elastic media due to an external compressor. Ultrasound Med Biol 1994; 20: 27-33
  • 39 Ophir J, Miller RK, Ponnekanti H, Cespedes I, Whittaker AD. Elastography of beef muscle. Meat science 1994; 36: 239-250
  • 40 Ponnekanti H, Ophir J, Huang Y, Cespedes I. Fundamental mechanical limitations on the visualization of elasticity contrast in elastography. Ultrasound Med Biol 1995; 21: 533-543
  • 41 Ophir J, Alam SK, Garra BS, Kallel F, Konofagou EE, Krouskop T. et al. Elastography: Imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason (2001) 2002; 29: 155
  • 42 Chen EJ, Novakofski J, Jenkins WK, Brien WDO. Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 1996; 43: 191-194
  • 43 Jenssen C, Lauer N, Burmester E, Will U, Hocke M, Dietrich C. „Art meets Science“ – Gedanken zu Schnittstellen zwischen Kunst und Wissenschaft. Das Spannungsfeld von Information und ästhetischer Faszination in Endoskopie und Bildgebung. Endoskopie heute 2013; 26: 2-12
  • 44 Dickinson RJ, Hill CR. Measurement of soft tissue motion using correlation between A-scans. Ultrasound Med Biol 1982; 8: 263-271
  • 45 Tristam M, Barbosa DC, Cosgrove DO, Nassiri DK, Bamber JC, Hill CR. Ultrasonic study of in vivo kinetic characteristics of human tissues. Ultrasound Med Biol 1986; 12: 927-937
  • 46 Hill CR, Tristam M, Bamber JC, Blaszcyk M, Barbosa DC, Cosgrove D. et al. Ultrasonic remote palpation (URP): Use of shear elastic modulus to differentiate pathology. J Ultrasound Med. 1988. 7. S129
  • 47 Bamber JC, Hasan P, Cook-Martin G, Bush NL. Parametric imaging of tissue share and flow imaging using B-scan decorrelation rate. J Ultrasound Med 1988; 7: S135-S136
  • 48 Bamber JC, Bush NL. Freehand Elasticity Imaging Using Speckle Decorrelation Rate. In: Tortoli P, Masotti L, editors. Acoustical Imaging. Boston, MA: Springer US; 1996: 285-292
  • 49 Bamber JC, Barbone PE, Bush NL, Cosgrove D, Doyely MM, Fuechsel FG. et al. Progress in Freehand Elastography of the Breast. IEICE Transactions on Information and Systems 2002; 85: 5-14
  • 50 Shiina T, Doyley MM, Bamber JC. editors. Strain imaging using combined RF and envelope autocorrelation processing. Proceedings IEEE Ultrasonics Symposium. 1996
  • 51 Bamber JC, Fuechsel FG, Bush NL, Tranquart F, Cosgrove DO, Miller NM. et al. Freehand elasticity imaging of breast masses: a preliminary clinical study. European J Ultrasound 2001; 13: S13
  • 52 Fuechsel FG, Bush NL, Tranquart F, Bamber JC, Cosgrove DO, Miller NR. Ultrasound freehand elastography: Evaluation of diagnostic potential in clinical breast imaging. Radiology 2001; 221: 188
  • 53 Doyley MM, Bamber JC, Fuechsel F, Bush NL. A freehand elastographic imaging approach for clinical breast imaging: system development and performance evaluation. Ultrasound Med Biol 2001; 27: 1347-1357
  • 54 Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. J Biomech 1995; 28: 1145-1154
  • 55 Lerner RM. Sono-elasticity’-Images derived from Ultrasound Signals in Mechanically Vibrated Targets: Report of the Commission of the European Communities Paper-Nr.: EUR11816EN; 1988.
  • 56 Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for “sonoelasticity imaging”. Ultrasound Med Biol 1990; 16: 241-246
  • 57 Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol 1990; 16: 231-239
  • 58 Lee F, Bronson JP, Lerner RM, Parker KJ, Huang SR, Roach DJ. Sonoelasticity imaging: results in in vitro tissue specimens. Radiology 1991; 181: 237-239
  • 59 Rubens DJ, Hadley MA, Alam SK, Gao L, Mayer RD, Parker KJ. Sonoelasticity imaging of prostate cancer: in vitro results. Radiology 1995; 195: 379-383
  • 60 Gao L, Parker KJ, Alam SK, Lernel RM. Sonoelasticity imaging: theory and experimental verification. J Acoust Soc Am 1995; 97: 3875-3886
  • 61 Lerner RM, Parker KJ. Sonoelasticity images derived from ultrasound signals in mechanically vibrated targets Proc. 7th European Communities Workshop (Oct 1987, Nijmegen, The Netherlands). 1987
  • 62 Sugimoto T, Ueha S, Itoh K. editors. Tissue hardness measurement using the radiation force of focused ultrasound. Proc IEEE Ultrasonics Symposium. 1990
  • 63 Sugimoto T, Ueha S, Itou K. Tissue Hardness Measurement using ultrasonic radiation force. J J Appl Phys 1992; Suppl 31: 166-168
  • 64 Sugimoto T, Ueha S, Itou K. Tissue hardness measurement using ultrasonic radiation force, theory and experiment using Voigt model. J Med Ultrasonics 1993; 20–5: 277-283
  • 65 Sugimoto T, Ueha S, Itoh K. A Evaluation Method of Tissue Hardness Using Relaxation Elastic Moduli Study of Measurement Theory and in vitro Experiment. Jpn J Medical Electronics and Biological Engineering 1991; 29: 635-641
  • 66 Sugimoto T, Ueha S, Itoh K. Tissue Basic research on hardness measurement of biological tissues: -In vivo measurement theory and experiments using Voigt model. Proc of the spring meeting the Acoustical Society of Japan 1993; II: 753-754
  • 67 Dietrich CF, Barr RG, Farrokh A, Dighe M, Hocke M, Jenssen C. et al. Strain Elastography - How To Do It?. Ultrasound Int Open 2017; 3: E137-E149
  • 68 Dietrich CF. Echtzeit-Gewebeelastographie. Anwendungsmöglichkeiten nicht nur im Gastrointestinaltrakt. Endoskopie Heute 2010; 23: 177-212
  • 69 Dietrich CF, Muller T, Bojunga J, Dong Y, Mauri G, Radzina M. et al. Statement and Recommendations on Interventional Ultrasound as a Thyroid Diagnostic and Treatment Procedure. Ultrasound Med Biol 2018; 44: 14-36
  • 70 Saftoiu A, Gilja OH, Sidhu PS, Dietrich CF, Cantisani V, Amy D. et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018. Ultraschall Med 2019; 40: 425-453
  • 71 Friedrich-Rust M, Vorlaender C, Dietrich CF, Kratzer W, Blank W, Schuler A. et al. Evaluation of Strain Elastography for Differentiation of Thyroid Nodules: Results of a Prospective DEGUM Multicenter Study. Ultraschall Med 2016; 37: 262-270
  • 72 Dighe M, Barr R, Bojunga J, Cantisani V, Chammas MC, Cosgrove D. et al. Thyroid Ultrasound: State of the Art. Part 2 – Focal Thyroid Lesions. Med Ultrason 2017; 19: 195-210
  • 73 Cosgrove D, Barr R, Bojunga J, Cantisani V, Chammas MC, Dighe M. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43: 4-26
  • 74 Farrokh A, Treu L, Ohlinger R, Flieger C, Maass N, Schafer FK. A Prospective Two Center Study Comparing Breast Cancer Lesion Size Defined by 2D Shear Wave Elastography, B-Mode Ultrasound, and Mammography with the Histopathological Size. Ultraschall Med 2019; 40: 212-220
  • 75 Farrokh A, Maass N, Treu L, Heilmann T, Schafer FK. Accuracy of tumor size measurement: comparison of B-mode ultrasound, strain elastography, and 2D and 3D shear wave elastography with histopathological lesion size. Acta Radiol 2019; 60: 451-458
  • 76 Farrokh A, Schaefer F, Degenhardt F, Maass N. Comparison of Two Different Ultrasound Devices Using Strain Elastography Technology in the Diagnosis of Breast Lesions Related to the Histologic Results. Ultrasound Med Biol 2018; 44: 978-985
  • 77 Barr RG, Nakashima K, Amy D, Cosgrove D, Farrokh A, Schafer F. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol 2015; 41: 1148-1160
  • 78 Farrokh A, Wojcinski S, Degenhardt F. Evaluation of real-time tissue sono-elastography in the assessment of 214 breast lesions: limitations of this method resulting from different histologic subtypes, tumor size and tumor localization. Ultrasound Med Biol 2013; 39: 2264-2271
  • 79 Jiang M, Li CL, Luo XM, Chuan ZR, Lv WZ, Li X. et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur J Cancer 2021; 147: 95-105
  • 80 Ferraioli G, Wong VW, Castera L, Berzigotti A, Sporea I, Dietrich CF. et al. Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med Biol 2018; 44: 2419-2440
  • 81 Ferraioli G, Filice C, Castera L, Choi BI, Sporea I, Wilson SR. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol 2015; 41: 1161-1179
  • 82 Tanter M, Bercoff J, Sandrin L, Fink M. Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 1363-1374
  • 83 Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 436-446
  • 84 Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 426-435
  • 85 Catheline S, Thomas JL, Wu F, Fink MA. Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 1013-1019
  • 86 Catheline S. Interférométrie-speckle ultrasonore: application à la mesure d’élasticité. Thèse de doctorat. Université Paris VII. 1998
  • 87 Sandrin L, Cassereau D, Fink M. The role of the coupling term in transient elastography. J Acoust Soc Am 2004; 115: 73-83
  • 88 Bercoff J, Chaffai S, Tanter M, Sandrin L, Catheline S, Fink M. et al. In vivo breast tumor detection using transient elastography. Ultrasound Med Biol 2003; 29: 1387-1396
  • 89 Sandrin L, Catheline S, Tanter M, Hennequin X, Fink M. Time-resolved pulsed elastography with ultrafast ultrasonic imaging. Ultrason Imaging 1999; 21: 259-272
  • 90 Sandrin L, Manneville S, Fink M. Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging. Applied Physics Letters 2001; 78: 1155-1157
  • 91 Manneville S, Sandrin L, Fink M. Investigating a stretched vortex with ultrafast two-dimensional ultrasonic speckle velocimetry. Physics of Fluids 2001; 13: 1683-1690
  • 92 Povey MJW. Ultrasonics in food engineering Part II: Applications. Journal of Food Engineering 1989; 9: 1-20
  • 93 Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F. et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713
  • 94 Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F. et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54
  • 95 Sasso M, Beaugrand M, de Ledinghen V, Douvin C, Marcellin P, Poupon R. et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010; 36: 1825-1835
  • 96 Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 1998; 24: 1419-1435
  • 97 Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am 2001; 110: 625-634
  • 98 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 396-409
  • 99 Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61: 102-119
  • 100 Tanter M, Bercoff J, Athanasiou A, Deffieux T, Gennisson JL, Montaldo G. et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 2008; 34: 1373-1386
  • 101 Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T. et al. Breast lesions: quantitative elastography with supersonic shear imaging--preliminary results. Radiology. 2010; 256: 297-303
  • 102 Cosgrove DO, Berg WA, Dore CJ, Skyba DM, Henry JP, Gay J. et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol 2012; 22: 1023-1032
  • 103 Dietrich CF, Bamber J, Berzigotti A, Bota S, Cantisani V, Castera L. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall Med 2017; 38: e16-e47
  • 104 McAleavey S, Collins E, Kelly J, Elegbe E, Menon M. Validation of SMURF estimation of shear modulus in hydrogels. Ultrason Imaging 2009; 31: 131-150
  • 105 Dietrich CF, Bamber J, Berzigotti A, Bota S, Cantisani V, Castera L. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Short Version). Ultraschall Med 2017; 38: 377-394
  • 106 Montaldo G, Tanter M, Bercoff J, Benech N, Fink M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2009; 56: 489-506
  • 107 Fink M, Tanter M. Multiwave imaging and super resolution. Physics Today 2010; 63: 28-33
  • 108 Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36: 789-801
  • 109 Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force. Exerc Sport Sci Rev 2015; 43: 125-133
  • 110 Pernot M, Lee WN, Bel A, Mateo P, Couade M, Tanter M. et al. Shear Wave Imaging of Passive Diastolic Myocardial Stiffness: Stunned Versus Infarcted Myocardium. JACC Cardiovasc Imaging 2016; 9: 1023-1030
  • 111 Couade M, Pernot M, Prada C, Messas E, Emmerich J, Bruneval P. et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med Biol 2010; 36: 1662-1676
  • 112 Ferraioli G, Maiocchi L, Raciti MV, Tinelli C, De Silvestri A, Nichetti M. et al. Detection of Liver Steatosis With a Novel Ultrasound-Based Technique: A Pilot Study Using MRI-Derived Proton Density Fat Fraction as the Gold Standard. Clin Transl Gastroenterol 2019; 10: e00081
  • 113 Fujiwara Y, Kuroda H, Abe T, Ishida K, Oguri T, Noguchi S. et al. The B-Mode Image-Guided Ultrasound Attenuation Parameter Accurately Detects Hepatic Steatosis in Chronic Liver Disease. Ultrasound Med Biol 2018; 44: 2223-2232
  • 114 Imbault M, Faccinetto A, Osmanski BF, Tissier A, Deffieux T, Gennisson JL. et al. Robust sound speed estimation for ultrasound-based hepatic steatosis assessment. Phys Med Biol 2017; 62: 3582-3598
  • 115 Imbault M, Dioguardi Burgio M, Faccinetto A, Ronot M, Bendjador H, Deffieux T. et al. Ultrasonic fat fraction quantification using in vivo adaptive sound speed estimation. Phys Med Biol 2018; 63: 215013
  • 116 Stahli P, Becchetti C, Korta Martiartu N, Berzigotti A, Frenz M, Jaeger M. First-in-human diagnostic study of hepatic steatosis with computed ultrasound tomography in echo mode. Commun Med (Lond) 2023; 3: 176
  • 117 Zhu Y, Yin H, Zhou D, Zhao Q, Wang K, Fan Y. et al. A prospective comparison of three ultrasound-based techniques in quantitative diagnosis of hepatic steatosis in NAFLD. Abdom Radiol (NY).. 2024 49. 81-92
  • 118 Ferraioli G, Berzigotti A, Barr RG, Choi BI, Cui XW, Dong Y. et al. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. Ultrasound Med Biol 2021; 47: 2803-2820
  • 119 Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC. et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 2019; 20: 605-619
  • 120 Frey H. [Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity]. Der Radiologe 2003; 43: 850-855
  • 121 Ignee A, Jenssen C, Hocke M, Dong Y, Wang WP, Cui XW. et al. Contrast-enhanced (endoscopic) ultrasound and endoscopic ultrasound elastography in gastrointestinal stromal tumors. Endosc Ultrasound 2017; 6: 55-60
  • 122 Dietrich CF, Ferraioli G, Sirli R, Popescu A, Sporea I, Pienar C. et al. General advice in ultrasound based elastography of pediatric patients. Med Ultrason 2019; 21: 315-326
  • 123 Sengupta PP, Chandrashekhar Y. The New Wave of Cardiovascular Biomechanics. JACC Cardiovasc Imaging 2019; 12: 1297-1299
  • 124 Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I. et al. Myocardial Stiffness Evaluation Using Noninvasive Shear Wave Imaging in Healthy and Hypertrophic Cardiomyopathic Adults. JACC Cardiovasc Imaging 2019; 12: 1135-1145
  • 125 Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM. et al. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics: a review publication of the Radiological Society of North America, Inc 2017; 37: 855-870
  • 126 Cui XW, Li KN, Yi AJ, Wang B, Wei Q, Wu GG. et al. Ultrasound elastography. Endosc Ultrasound 2022; 11: 252-274
  • 127 Dietrich CF, Saftoiu A, Jenssen C. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol 2014; 83: 405-414
  • 128 Dietrich CF, Bibby E, Jenssen C, Saftoiu A, Iglesias-Garcia J, Havre RF. EUS elastography: How to do it?. Endosc Ultrasound 2018; 7: 20-28
  • 129 Dietrich CF, Burmeister S, Hollerbach S, Arcidiacono PG, Braden B, Fusaroli P. et al. Do we need elastography for EUS?. Endosc Ultrasound 2020; 9: 284-290
  • 130 Giovannini M, Thomas B, Erwan B, Christian P, Fabrice C, Benjamin E. et al. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol 2009; 15: 1587-1593
  • 131 Larsen MH, Fristrup C, Hansen TP, Hovendal CP, Mortensen MB. Endoscopic ultrasound, endoscopic sonoelastography, and strain ratio evaluation of lymph nodes with histology as gold standard. Endoscopy 2012; 44: 759-766
  • 132 Saftoiu A, Vilmann P, Hassan H, Gorunescu F. Analysis of endoscopic ultrasound elastography used for characterisation and differentiation of benign and malignant lymph nodes. Ultraschall Med 2006; 27: 535-542
  • 133 Dietrich CF, Jenssen C, Arcidiacono PG, Cui XW, Giovannini M, Hocke M. et al. Endoscopic ultrasound: Elastographic lymph node evaluation. Endosc Ultrasound 2015; 4: 176-190
  • 134 Hirche TO, Ignee A, Barreiros AP, Schreiber-Dietrich D, Jungblut S, Ott M. et al. Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. Endoscopy 2008; 40: 910-917
  • 135 Saftoiu A, Vilmann P, Gorunescu F, Janssen J, Hocke M, Larsen M. et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin Gastroenterol Hepatol 2012; 10: 84-90 e1
  • 136 Janssen J, Schlorer E, Greiner L. EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointestinal endoscopy 2007; 65: 971-978
  • 137 Saftoiu A, Vilmann P, Gorunescu F, Gheonea DI, Gorunescu M, Ciurea T. et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc 2008; 68: 1086-1094
  • 138 Saftoiu A, Vilmann P, Gorunescu F, Janssen J, Hocke M, Larsen M. et al. Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. Endoscopy 2011; 43: 596-603
  • 139 Dietrich CF, Hirche TO, Ott M, Ignee A. Real-time tissue elastography in the diagnosis of autoimmune pancreatitis. Endoscopy 2009; 41: 718-720
  • 140 Iglesias-Garcia J, Larino-Noia J, Abdulkader I, Forteza J, Dominguez-Munoz JE. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses. Gastroenterology. 2010; 139: 1172-1180
  • 141 Itokawa F, Itoi T, Sofuni A, Kurihara T, Tsuchiya T, Ishii K. et al. EUS elastography combined with the strain ratio of tissue elasticity for diagnosis of solid pancreatic masses. Journal of gastroenterology 2011; 46: 843-853
  • 142 Ignee A, Jenssen C, Arcidiacono PG, Hocke M, Moller K, Saftoiu A. et al. Endoscopic ultrasound elastography of small solid pancreatic lesions: a multicenter study. Endoscopy 2018; 50: 1071-1079
  • 143 Fusaroli P, Saftoiu A, Mancino MG, Caletti G, Eloubeidi MA. Techniques of image enhancement in EUS (with videos). Gastrointestinal endoscopy 2011; 74: 645-655
  • 144 Puga-Tejada M, Del Valle R, Oleas R, Egas-Izquierdo M, Arevalo-Mora M, Baquerizo-Burgos J. et al. Endoscopic ultrasound elastography for malignant pancreatic masses and associated lymph nodes: Critical evaluation of strain ratio cutoff value. World journal of gastrointestinal endoscopy 2022; 14: 524-535
  • 145 Dietrich CF, Hocke M. Elastography of the Pancreas, Current View. Clin Endosc 2019; 52: 533-540
  • 146 Dietrich CF, Sahai AV, D’Onofrio M, Will U, Arcidiacono PG, Petrone MC. et al. Differential diagnosis of small solid pancreatic lesions. Gastrointest Endosc 2016; 84: 933-940
  • 147 Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 2013; 34: 169-184
  • 148 Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 2013; 34: 238-253
  • 149 Cui XW, Friedrich-Rust M, De Molo C, Ignee A, Schreiber-Dietrich D, Dietrich CF. Liver elastography, comments on EFSUMB elastography guidelines 2013. World J Gastroenterol 2013; 19: 6329-6347
  • 150 Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J. et al. Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2015; 276: 845-861
  • 151 Barr RG, Wilson SR, Rubens D, Garcia-Tsao G, Ferraioli G. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology 2020; 296: 263-274
  • 152 Dietrich CF, Shi L, Wei Q, Dong Y, Cui XW, Lowe A. et al. What does liver elastography measure? Technical aspects and methodology. Minerva Gastroenterol (Torino) 2021; 67: 129-140
  • 153 Ferraioli G, Barr RG, Farrokh A, Radzina M, Cui XW, Dong Y. et al. How to perform shear wave elastography. Part I. Med Ultrason 2022; 24: 95-106
  • 154 Ferraioli G, Barr RG, Farrokh A, Radzina M, Cui XW, Dong Y. et al. How to perform shear wave elastography. Part II. Med Ultrason 2022; 24: 196-210