Subscribe to RSS
DOI: 10.1055/a-2379-9191
Dehydrosilylation of Alcohols Using Gold Nanoparticles Deposited on Citric Acid Modified Fibrillated Cellulose
This research was supported by the JST-Mirai Program (JPMJMI18E3) and by JSPS KAKENHI grants JP19K22187 (H.S.), JP20K15279 (Y.U.), and JP22K05095 (Y.U.).
Dedicated to Professor B. C. Ranu on the occasion of his 75th birthday.
Abstract
The development of an effective catalytic system for the dehydrogenative coupling of hydrosilanes with alcohols remains an ongoing challenge, particularly for alcohol protection applications. In this study, we report the development and optimization of a highly efficient gold catalyst supported on fibrillated cellulose modified with citric acid. The catalyst exhibited remarkable catalytic activity under mild conditions with 0.01–0.05 mol% of Au loading, facilitating the formation of silyl ethers with excellent yield. Notably, our catalytic system overcomes the need for excess alcohol, typically required in such reactions, making it highly practical for alcohol protection applications. This work represents a significant advancement in the field of dehydrosilylation catalysis, offering a sustainable, efficient, and environmentally friendly approach for the synthesis of functional silanol-based materials and alcohol protection applications. The scope of substrates and the utility of the catalyst have been thoroughly studied.
Key words
gold catalysis - nanoparticles - cellulose - dehydrogenative coupling - hydrosilanes - silylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2379-9191.
- Supporting Information
Publication History
Received: 20 June 2024
Accepted after revision: 05 August 2024
Accepted Manuscript online:
05 August 2024
Article published online:
02 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Pietrasik J, Zaborski M. Polym. Int. 2005; 54: 1119
- 1b Parrott MC, Luft JC, Byrne JD, Fain JH, Napier ME, DeSimone JM. J. Am. Chem. Soc. 2010; 132: 17928
- 1c Karki K, Materny A, Roccatano D. Phys. Chem. Chem. Phys. 2011; 13: 11864
- 2 Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis, 3rd ed. Wiley-Interscience; New York: 1991
- 3a Lukevics E, Dzintara M. J. Organomet. Chem. 1985; 295: 265
- 3b Hatano B, Toyota S, Toda F. Green Chem. 2001; 3: 140
- 4a Caseri W, Pregosin PS. Organometallics 1988; 7: 1373
- 4b Ito H, Takagi K, Miyahara T, Sawamura M. Org. Lett. 2005; 7: 3001
- 4c Dong X, Weickgenannt A, Oestreich M. Nat. Commun. 2017; 8: 15547
- 4d Sridhar M, Raveendra J, Ramanaiah BC, Narsaiah C. Tetrahedron Lett. 2011; 52: 5980
- 5a Hara K, Akiyama R, Takakusagi S, Uosaki K, Yoshino T, Kagi H, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 5627
- 5b Blandez JF, Primo A, Álvaro M, García H. Angew. Chem. Int. Ed. 2014; 53: 12581
- 5c Raffa P, Evangelisti C, Vitulli G, Salvadori P. Tetrahedron Lett. 2008; 49: 3221
- 5d Li Z, Zhang C, Tian J, Zhang Z, Zhang X, Ding Y. Catal. Commun. 2014; 53: 53
- 5e Li Z, Lin S, Ji L, Zhang Z, Zhang X, Ding Y. Catal. Sci. Technol. 2014; 4: 1734
- 6 White RJ, Luque R, Budarin VL, Clark JH, Macquarrie D. J. Chem. Soc. Rev. 2009; 38: 481
- 7 Zhang Q, Peng M, Gao Z, Guo W, Sun Z, Zhao Y, Zhou W, Wang M, Mei B, Du X.-L, Jiang Z, Sun W, Liu C, Zhu Y, Liu Y.-M, He H.-Y, Li ZH, Ma D, Cao Y. J. Am. Chem. Soc. 2023; 145: 4166
- 8a Taguchi T, Isozaki K, Miki K. Adv. Mater. 2012; 24: 6462
- 8b Mitsudome T, Yamamoto Y, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Eur. J. 2013; 19: 14398
- 8c Wang C, Lin X, Ge Y, Shah ZH, Lu R, Zhang S. RSC Adv. 2016; 6: 102102
- 8d Kadam RG, Medved’ M, Kumar S, Zaoralová D, Zoppellaro Z, Bad’ura Z, Montini T, Bakandritsos A, Fonda E, Tomanec O, Otyepka M, Varma RS, Gawande MB, Fornasiero P, Zborǐl R. ACS Catal. 2023; 13: 16067
- 9a Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh T.-a, Uyama H, Sakurai H. ACS Omega 2020; 5: 33206
- 9b Uetake Y, Suwattananuruk B, Sakurai H. Sci. Rep. 2022; 12: 20602
- 9c Suwattananuruk B, Uetake Y, Ichikawa R, Toyoshima R, Kondoh H, Sakurai H. Nanoscale 2024; 16: 12474
- 10a Cui X, Ozaki A, Asoh T.-a, Uyama H. Polym. Degrad. Stab. 2020; 175: 109118
- 10b Cui X, Honda T, Asoh T.-a, Uyama H. Carbohydr. Polym. 2020; 230: 115662
- 11 Gupta R, Paul S, Gupta R. J. Mol. Catal. 2007; 266: 50.0
- 12a Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Commun. 2009; 5302
- 12b Bobuatong K, Sakurai H, Ehara M. ChemCatChem 2017; 9: 4450
- 12c Boronat M, Leyva-Pérez A, Corma A. Acc. Chem. Res. 2014; 47: 834
- 12d Yamazoe S, Koyasu K, Tsukuda T. Acc. Chem. Res. 2014; 47: 816
- 12e Stratakis M, Garcia H. Chem. Rev. 2012; 112: 4469
- 13 da Silva AG. M, Kisukuri CM, Rodrigues TS, Candido EG, de Freitas IC, da Silva AH. M, Assaf JM, Oliveira DC, Andrade LH, Camargo PH. C. Appl. Catal., B 2016; 184: 35
- 14 Dehydrosilylation of Alcohols; General Procedure A reaction tube equipped with a magnetic stirrer bar was charged with Au:F-CAC (0.05 atom%), PhSiHMe2 (2.0 mmol), the appropriate alcohol 3 (0.5 mmol), and toluene (3 mL), and the mixture was stirred for the appropriate time under an ambient atmosphere. The catalyst was then removed by filtration and washed with Et2O (3 × 5 mL). The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography (silica gel) or preparative TLC to give the silyl ether 4.
- 15 (Benzyloxy)(dimethyl)phenylsilane (4a) Purified by preparative TLC (hexane–EtOAc, 20:1) to give a colorless oil; yield: 82%. 1H NMR (CDCl3): δ = 7.62–7.60 (m, 2 H), 7.42–7.37 (m, 4 H), 7.32–7.29 (m, 3 H), 7.26–7.24 (m, 1 H), 4.70 (s, 2 H), 0.41 (s, 6 H). 13C NMR (CDCl3): δ = 140.7, 137.6, 133.5, 129.7, 128.3, 127.9, 127.1, 126.5, 65.0, –1.7.
- 16 4-({[Dimethyl(phenyl)silyl]oxy}methyl)benzaldehyde (4f) Purified by column chromatography [silica gel, hexanes–EtOAc (9:1)] to give a colorless oil; yield: 48%. IR (diamond): 3069, 2957, 2846, 2733, 1696, 1607, 1578, 1427, 1303, 1251, 1206, 1164, 1116, 1082, 1015, 845, 826, 784, 728, 698, 648, 618, 470 cm–1. 1H NMR (CDCl3): δ = 9.99 (s, 1 H), 7.86–7.81 (AA′BB′, 2 H), 7.60 (dd, J = 7.9, 1.8 Hz, 2 H), 7.49–7.43 (AA′BB′, 2 H), 7.42–7.37 (m, 3 H), 4.77 (s, 2 H), 0.44 (s, 6 H). 13C NMR (CDCl3): δ = 192.1, 147.9, 137.1, 135.4, 133.5, 129.9, 129.8, 128.0, 126.6, 64.4, –1.8. HRMS (EI+): m/z [M+•] calcd for C16H18O2Si: 270.1076; found: 270.1082.
- 17 4-({[Dimethyl(phenyl)silyl]oxy}methyl)aniline (4g) Purified by gel column chromatography [silica gel, hexanes–EtOAc (3:7)] to give a brownish oil; yield: 42%. IR (diamond): 3450, 3359, 3225, 3019, 2954, 2862, 1623, 1517, 1427, 1375, 1252, 1214, 1173, 1116, 1046, 844, 823, 782, 727, 697, 642, 536, 493, 470 cm–1. 1H NMR (CDCl3): δ = 7.59 (dd, J = 7.1, 2.1 Hz, 2 H), 7.43–7.34 (m, 3 H), 7.11–7.05 (AA′BB′, 2 H), 6.67–6.61 (AA′BB′, 2 H), 4.57 (s, 2 H), 3.63 (s, NH2), 0.38 (s, 6 H). 13C NMR (CDCl3): δ = 145.6, 137.8, 133.6, 130.8, 129.6, 128.4, 127.8, 115.0, 65.0, –1.6. HRMS (EI+) m/z [M+•] calcd for C15H19NOSi: 257.1230; found: 257.1236.