Subscribe to RSS
DOI: 10.1055/a-2384-6655
Fe(II)-Catalyzed Metal–Ligand Cooperative Approach for Selective C3-Alkylation of Indoles
The research was supported by the Ministry of Education, India(STARS, Project STARS2/2023-0450) and the CSIR (Project: 01(3023)/21/EMR-II). The Department of Science and Technology, India funded SAIF facility at IIESTS is acknowledged for providing NMR and HRMS facilities.
Abstract
Herein, we report a straightforward approach for synthesizing C3-alkylated indoles selectively via an iron-catalyzed alkylation of indoles using alcohols as the alkylating agents. A well-defined, air-stable, and easy-to-prepare Fe(II) catalyst of a redox-active tridentate arylazo scaffold was used as a catalyst. Various C3-alkylated indoles were prepared selectively in moderate to good isolated yields by coupling indoles with different substituted alcohols. The methodology is compatible with the gram-scale synthesis. Control experiments were performed to unveil the mechanism, which revealed that the alkylation reaction proceeds via borrowing-hydrogen pathway where the coordinated azo-aromatic ligand actively participates during catalysis, acting as an electron and hydrogen reservoir.
Key words
iron catalysis - metal–ligand cooperativity - borrowing hydrogen approach - C3-alkylated indole - alcoholsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2384-6655.
- Supporting Information
Publication History
Received: 30 June 2024
Accepted after revision: 12 August 2024
Accepted Manuscript online:
12 August 2024
Article published online:
27 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chavan PW, Hanamshetty PC, Nagabhushana MM, Thippeswamy AT. Int. J. Current Pharm. Rev. Res. 2022; 14: 46
- 1b Singh TP, Singh OM. Med. Chem. 2018; 18: 9
- 1c Dadashpoura S, Emami S. Eur. J. Med. Chem. 2018; 150: 9
- 1d Homer JA, Sperry J. J. Nat. Prod. 2017; 80: 2178
- 1e Sravanthi TV, Manju SL. Eur. J. Pharm. Sci. 2016; 91: 1
- 1f Indole Ring Synthesis: From Natural Products to Drug Discovery. Gribble GW. John Wiley and Sons; Hoboken: 2016
- 1g Netz N, Opatz T. Mar. Drugs 2015; 13: 4814
- 1h Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 2a Sun P, Huang Y, Chen S, Ma X, Yang Z, Wu J. Chin. Chem. Lett. 2024; 35: 109005
- 2b Han Y, Dong W, Guo Q, Li X, Huang L. Eur. J. Med. Chem. 2020; 203: 112506
- 2c Singh TP, Singh OM. Mini-Rev. Med. Chem. 2018; 18: 9
- 2d Corsello MA, Kim J, Garg NK. Chem. Sci. 2017; 8: 5836
- 2e Stempel E, Gaich T. Acc. Chem. Res. 2016; 49: 2390
- 2f Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421e441
- 2g Melander RJ, Minvielle MJ, Melander C. Tetrahedron 2014; 70: 6363
- 2h Walker SR, Carter EJ, Huff BC, Morris JC. Chem. Rev. 2009; 109: 3080
- 2i Feniuk W, Humphrey PP. A. Drug Dev. Res. 1992; 26: 235
- 3a Ma J, Feng R, Dong Z.-B. Asian J. Org. Chem. 2023; 12: e202300092
- 3b Urbina K, Tresp D, Sipps K, Szostaka M. Adv. Synth. Catal. 2021; 363: 2723
- 3c Lancianesi S, Palmieri A, Petrini M. Chem. Rev. 2014; 114: 7108
- 4a Deepak RJ, Sathishkumara PN, Karvembu R. New J. Chem. 2022; 46: 23305
- 4b Bonandi E, Perdicchia D, Colombo E, Foschi F, Marzullo P, Passarella D. Org. Biomol. Chem. 2020; 18: 6211
- 4c Qian Y, Ma G, Lv A, Zhu H.-L, Zhao J, Rawal VH. Chem. Commun. 2010; 46: 3004
- 4d Bandini M, Umani-Ronchi A. Catalytic Asymmetric Friedel–Crafts Alkylations . Wiley-VCH; Weinheim: 2009
- 4e Hui Y, Zhang Q, Jiang J, Lin L, Liu X, Feng X. J. Org. Chem. 2009; 74: 6878
- 5a Reed-Berendt BG, Latham DE, Dambatta MB, Morrill LC. ACS Cent. Sci. 2021; 7: 570
- 5b Bartoccini F, Retini M, Piersanti G. Tetrahedron Lett. 2020; 61: 151875
- 5c Pradhan S, De PB, Shah TA, Punniyamurthy T. Chem Asian J. 2020; 15: 4184
- 6 Whitney S, Grigg R, Derrick A, Keep A. Org. Lett. 2007; 9: 3299
- 7a Siddiki SM. A. H, Touchy AS, Jamil MdA. R, Toyao T, Shimizu K.-i. ACS Catal. 2018; 8: 3091
- 7b Siddiki SM. A. H, Kon K, Shimizu K.-i. Chem. Eur. J. 2013; 19: 14416
- 8a Liu Z, Cai M, Yin F, Li Y, Zhu H. Tetrahedron Lett. 2024; 144: 155155
- 8b Putra AE, Takigawa K, Tanaka H, Ito Y, Oe Y, Ohta T. Eur. J. Org. Chem. 2013; 6344
- 9a Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. J. Org. Chem. 2023; 88: 16755
- 9b Chen X, Zhou X.-Y. Synthesis 2023; 55: 1460
- 9c Zhang B, Wang L, Wang D, Zeng W. New J. Chem. 2022; 46: 22797
- 9d Gramage-Doria R, Bruneau C. Coord. Chem. Rev. 2021; 428: 213602
- 9e Biswas N, Sharma R, Srimani D. Adv. Synth. Catal. 2020; 362: 2902
- 10a Koller S, Blazejak M, Hintermann L. Eur. J. Org. Chem. 2018; 1624
- 10b Bartolucci S, Mari M, Bedini A, Piersanti G, Spadoni G. J. Org. Chem. 2015; 80: 3217
- 11a Thenarukandiyil R, Kamte R, Garhwal S, Effnert P, Fridman N, de Ruiter G. Organometallics 2023; 42: 62
- 11b Mondal A, Sharma R, Dutta B, Pal D, Srimani D. J. Org. Chem. 2022; 87: 3989
- 11c Zhao M, Li X, Zhang X, Shao Z. Chem. Asian J. 2022; 17: e202200483
- 11d Borghs JC, Zubar V, Azofra LM, Sklyaruk J, Rueping M. Org. Lett. 2020; 22: 4222
- 12a Kamal Kamal, Khatua M, Rania S, Goswami B, Samanta S. J. Org. Chem. 2023; 88: 5827
- 12b Zhou B, Ma Z, Alenad AM, Kreyenschulte C, Bartling S, Beller M, Jagadeesh RV. Green Chem. 2022; 24: 4566
- 12c Cabrero-Antonino JR, Adam R, Junge K, Beller M. Chem. Sci. 2017; 8: 6439
- 12d Liu Z, Yang Z, Yu X, Zhang H, Yu B, Zhao Y, Liu Z. Org. Lett. 2017; 19: 5228
- 13a Hu M, Jiang Y, Sun N, Hu B, Shen Z, Hu X, Jin L. New J. Chem. 2021; 45: 10057
- 13b Bains AK, Biswas A, Adhikari D. Chem. Commun. 2020; 56: 15442
- 14 For Cu-catalyzed C3-alkylation of indoles: Nguyen N.-K, Nam DH, Phuc BV, Nguyen VH, Trinh QT, Hung TQ, Dang TT. Mol. Catal. 2021; 505: 111462
- 15 For Zn-catalyzed C3-alkylation of indoles: Pal S, Guin AK, Chakraborty S, Paul ND. ChemCatChem 2024; 16: e202400026
- 16a Gregorio GDi, Mari M, Bartoccini F, Piersanti G. J. Org. Chem. 2017; 82: 8769
- 16b Seck C, Mbaye MD, Gaillard S, Renaud J.-L. Adv. Synth. Catal. 2018; 360: 4640
- 16c Polidano K, Allen BD. W, Williams JM. J, Morrill LC. ACS Catal. 2018; 8: 6440
- 17a Pradhan C, Punji B. In Topics in Heterocyclic Chemistry 2024
- 17b Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Org. Chem. Front. 2022; 9: 5246
- 17c Wu X, Ma W, Tang W, Xue D, Xiao J, Wang C. Chem. Eur. J. 2022; 28: e202201829
- 17d Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. J. Org. Chem. 2021; 86: 13186
- 17e Wei D, Netkaew C, Darcel C. Eur. J. Inorg. Chem. 2019; 2471
- 17f Sreedevi R, Saranya S, Rohit KR, Anilkumar G. Adv. Synth. Catal. 2019; 361: 2236
- 17g Quintard A, Rodriguez J. ChemSusChem 2016; 9: 28
- 17h Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
- 18a Guin AK, Chakraborty S, Khanra S, Chakraborty S, Paul ND. Org. Lett. 2024; 26: 2540
- 18b Sinha S, Das S, Sikari R, Parua S, Brandaõ P, Demeshko S, Meyer F, Paul ND. Inorg. Chem. 2017; 56: 14084
- 18c Mondal R, Sinha S, Das S, Chakraborty G, Paul ND. Adv. Synth. Catal. 2020; 362: 594
- 18d Sinha S, Das S, Mondal R, Mandal S, Paul ND. Dalton Trans. 2020; 49: 8448
- 18e Sinha S, Sikari R, Sinha V, Jash U, Das S, Brandão P, Demeshko S, Meyer F, de Bruin B, Paul ND. Inorg. Chem. 2019; 58: 1935
- 19 General Procedure for C3-Alkylation of Indoles (4a–t) In a 15 mL oven-dried high-pressure tube, respective indoles (1 equiv., 1.0 mmol), alcohols (2.5 equiv., 2.5 mmol), KOH (0.7 mmol, 39.2 mg), Zn dust (0.7 mmol, 47 mg), 1a (3.0 mol%, 13.4 mg), and a tiny magnetic stir bar were added under an argon atmosphere, and the tube was tightly capped with a PTFE screw cap and then placed in an oil bath preheated to 140 °C. The reaction was continued for 16 h. After completion of the reaction, the mixture was diluted with ethyl acetate and passed through a Celite pad. The solvent and the volatiles were evaporated under a vacuum, and the crude reaction mixture was purified by column chromatography using hexane and ethyl acetate as the eluent.
For C3-alkylated indoles:
Classical approach:
For Pt-catalyzed C3-alkylation of indoles:
For Pd-catalyzed C3-alkylation of indoles:
For Ru-catalyzed C3-alkylation of indoles:
For Ir-catalyzed C3-alkylation of indoles:
For Mn-catalyzed C3-alkylation of indoles:
For Co-catalyzed C3-alkylation of indoles:
For Ni-catalyzed C3-alkylation of indoles:
Use of iron in catalysis: