Hamostaseologie
DOI: 10.1055/a-2410-8530
Original Article

Molecular and Clinical Risk Factors Associated with Thrombosis and Bleeding in Myelofibrosis Patients

Olga Morath
1   Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
,
Carl Crodel
1   Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
,
Jenny Rinke
1   Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
,
Inken Sander
1   Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
,
Aysun Tekbas
2   Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Germany
,
Manja Meggendorfer
3   MLL Münchner Leukämielabor GmbH, München, Germany
,
Constance Baer
3   MLL Münchner Leukämielabor GmbH, München, Germany
,
Andreas Hochhaus
1   Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
,
Thomas Ernst
1   Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
› Author Affiliations

Abstract

Background The risk of thrombosis and bleeding in myelofibrosis (MF) has been historically underappreciated. We sought to investigate potential molecular and clinical risk factors for venous (VTE) and arterial (ATE) thrombotic events as well as bleeding episodes.

Methods Data from 246 consecutive MF patients were analyzed. Driver mutations were tested in 191 patients.

Results In total, 181 mutations were found in 177 MF patients: 118 (61.8%) patients showed JAK2-V617F, 50 patients (26.2%) showed CALR, and 6 patients (3.1%) showed MPL mutations. Two patients were JAK2-V617F and MPL positive and one patient was positive for all three genes. Fourteen (7.3%) patients were triple negative. The JAK2-V617F allele burden was assessed in 63 JAK2-V617F-mutated patients, revealing a median of 35.6% (range: 5.0–96.0). At the time of MF diagnosis and during follow-up, 84 thrombotic events (52 VTEs and 32 ATEs) were observed, corresponding to 6.6% of patients per year. A significant association was found between JAK2-V617F mutation (OR: 2.5, 95% CI: 1.1–5.6) and prior VTE (OR: 7.6, 95% CI: 2.1–27.1) with an increased risk of VTE. Patients with prefibrotic MF had a higher rate of ATE than patients with overt MF. Hemorrhagic events occurred in 34 (13.8%) patients, corresponding to 3.8% of patients per year. Fibrosis grade 3 was associated with bleeding risk (OR: 3.4, 95% CI: 1.2–9.2, p = 0.02).

Conclusions The presence of the JAK2-V617F mutation, regardless of allele burden, and prior thrombosis were strongly associated with an increased risk of VTE. Patients with prefibrotic MF might be considered at high risk for developing ATE.

Authors' Contributions

Study conception and design: O.M., A.H., T.E.; collection of clinical data: O.M., C.C., I.S., A.T.; molecular analyses: J.R., M.M., C.B.; data analyses: O.M.; initial draft of the manuscript: O.M.; correction and approval of the final manuscript: all authors.


Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.


Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of University Jena (Reg. No.: 2021–2094-Material).




Publication History

Received: 14 June 2024

Accepted: 06 September 2024

Article published online:
21 December 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Khoury J, Solary E, Abla O. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022; 36 (07) 1703-1719
  • 2 Grießhammer M, Baerlocher GM, Döhner K. et al. Empfehlungen der Fachgesellschaft zur Diagnostik und Therapie hämatologischer und onkologischer Erkrankungen Leitlinie Primäre Myelofibrose (PMF). 2023 . Accessed September 15, 2024 at: www.onkopedia.com
  • 3 Arber DA, Orazi A, Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127 (20) 2391-2405
  • 4 Guglielmelli P, Pacilli A, Rotunno G. et al; AGIMM Group. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood 2017; 129 (24) 3227-3236
  • 5 Guglielmelli P, Carobbio A, Rumi E. et al. Validation of the IPSET score for thrombosis in patients with prefibrotic myelofibrosis. Blood Cancer J 2020; 10 (02) 21
  • 6 Kc D, Falchi L, Verstovsek S. The underappreciated risk of thrombosis and bleeding in patients with myelofibrosis: a review. Ann Hematol 2021; 100: 2075-2089
  • 7 Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in myelofibrosis. Blood 2017; 129 (05) 680-692
  • 8 Finazzi G, Carobbio A, Thiele J. et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 WHO criteria. Leukemia 2012; 26 (04) 716-719
  • 9 Rupoli S, Goteri G, Picardi P. et al. Thrombosis in essential thrombocytemia and early/prefibrotic primary myelofibrosis: the role of the WHO histological diagnosis. Diagn Pathol 2015; 10: 29
  • 10 Kaifie A, Kirschner M, Wolf D. et al; Study Alliance Leukemia (SAL). Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol 2016; 9 (22) 18
  • 11 Gerds AT, Mesa R, Burke JM. et al. Association between elevated white blood cell counts and thrombotic events in polycythemia vera: analysis from REVEAL. Thromb Haemost 2017; 117 (02) 321-328
  • 12 Pescia C, Lopez G, Cattaneo D, Bucelli C, Gianelli U, Iurlo A. The molecular landscape of myeloproliferative neoplasms associated with splanchnic vein thrombosis: current perspective. Leuk Res 2024; 136: 107420
  • 13 Pasquer H, de Oliveira RD, Vasseur L. et al. Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification. Leukemia 2024; 38 (02) 326-339
  • 14 Guy A, Helzy K, Mansier O. et al. Platelet function studies in myeloproliferative neoplasms patients with Calreticulin or JAK V617F mutation. Res Pract Thromb Haemost 2023; 7 (02) 100060
  • 15 Barbui T, Ghirardi A, Carobbio A. et al. Increased risk of thrombosis in JAK2 V617F-positive patients with primary myelofibrosis and interaction of the mutation with the IPSS score. Blood Cancer J 2022; 12 (11) 156
  • 16 Barbui T, Carobbio A, De Stefano V. Thrombosis in myeloproliferative neoplasms during cytoreductive and antithrombotic drug treatment. Res Pract Thromb Haemost 2022; 6 (01) e12657
  • 17 Buxhofer-Ausch V, Gisslinger B, Schalling M. et al. Impact of white blood cell counts at diagnosis and during follow-up in patients with essential thrombocythaemia and prefibrotic primary myelofibrosis. Br J Haematol 2017; 179 (01) 166-169
  • 18 Hasselbalch C, Elvers M, Schafer AI, Silver RT. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. 2021 . Accessed September 15, 2024 at: http://ashpublications.org/blood/article-pdf/137/16/2152/1805372/bloodbld2020008109c.pdf
  • 19 Debureaux PE, Cassinat B, Soret-Dulphy J. et al. Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses. Blood Adv 2020; 4 (15) 3708-3715
  • 20 Heidel FH, Crodel CC, Kreipe HH. Primäre Myelofibrose. Onkologie 2022 29. 315-322
  • 21 Horvat I, Boban A, Zadro R. et al. Influence of blood count, cardiovascular risks, inherited thrombophilia, and JAK2-V617F burden allele on type of thrombosis in patients with Philadelphia chromosome negative myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk 2019; 19 (01) 53-63
  • 22 Kanduła Z, Janowski M, Więckowska B, Paczkowska E, Lewandowski K. JAK2–V617F variant allele frequency, non-driver mutations, single-nucleotide variants and polycythemia vera outcome. J Cancer Res Clin Oncol 2023; 149 (08) 4789-4803
  • 23 Limvorapitak W, Parker J, Hughesman C, McNeil K, Foltz L, Karsan A. No differences in outcomes between JAK2 V617F-positive patients with variant allele fraction < 2% versus 2-10%: a 6-year province-wide retrospective analysis. Clin Lymphoma Myeloma Leuk 2020; 20 (09) e569-e578
  • 24 Matsuura S, Thompson CR, Belghasem ME. et al. Platelet dysfunction and thrombosis in JAK2–V617F-mutated primary myelofibrotic mice. Arterioscler Thromb Vasc Biol 2020; 40 (10) e262-e272
  • 25 Song IC, Yeon SH, Lee MW. et al. Thrombotic and hemorrhagic events in 2016 World Health Organization-defined Philadelphia-negative myeloproliferative neoplasm. Korean J Intern Med (Korean Assoc Intern Med) 2021; 36 (05) 1190-1203
  • 26 Soudet S, Le Roy G, Cadet E. et al. JAK2 allele burden is correlated with a risk of venous but not arterial thrombosis. Thromb Res 2022; 211: 1-5
  • 27 Wille K, Deventer E, Sadjadian P. et al. Arterial and venous thromboembolic complications in 832 patients with BCR-ABL-negative myeloproliferative neoplasms. Hamostaseologie 2023;
  • 28 Awada H, Bhatta M, Yu H. et al. ASXL1 mutation is a novel risk factor for bleeding in Philadelphia-negative myeloproliferative neoplasms. Leukemia 2023; 38 (01) 210-214
  • 29 Hernández-Boluda JC, Pastor-Galán I, Arellano-Rodrigo E. et al; Spanish MPN Group (GEMFIN). Predictors of thrombosis and bleeding in 1613 myelofibrosis patients from the Spanish Registry of Myelofibrosis. Br J Haematol 2022; 199 (04) 529-538
  • 30 Kander EM, Raza S, Zhou Z. et al. Bleeding complications in BCR-ABL negative myeloproliferative neoplasms: prevalence, type, and risk factors in a single-center cohort. Int J Hematol 2015; 102 (05) 587-593
  • 31 Guglielmelli P, Loscocco GG, Mannarelli C. et al. JAK2V617F variant allele frequency >50% identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J 2021; 11 (12) 199
  • 32 Baer C, Pohlkamp C, Haferlach C, Kern W, Haferlach T. Molecular patterns in cytopenia patients with or without evidence of myeloid neoplasm - a comparison of 756 cases. Leukemia 2018; 32 (10) 2295-2298
  • 33 Ye S, Dhillon S, Ke X, Collins AR, Day INM. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 2001; 29 (17) e88
  • 34 Schmidt M, Rinke J, Schäfer V. et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 2014; 28 (12) 2292-2299
  • 35 Bankar A, Smith E, Cheung V. et al. Clinical and molecular factors associated with thrombosis in myelofibrosis. EHA LiBrary 2021; 324816: EP1093
  • 36 Barbui T, Finazzi G, Carobbio A. et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 2012; 120 (26) 5128-5133 , quiz 5252
  • 37 Zhang Y, Zhou Y, Wang Y. et al. Thrombosis among 1537 patients with JAK2V617F -mutated myeloproliferative neoplasms: risk factors and development of a predictive model. Cancer Med 2020; 9 (06) 2096-2105
  • 38 Rumi E, Pietra D, Pascutto C. et al; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014; 124 (07) 1062-1069
  • 39 Cervantes F, Alvarez-Larrán A, Arellano-Rodrigo E, Granell M, Domingo A, Montserrat E. Frequency and risk factors for thrombosis in idiopathic myelofibrosis: analysis in a series of 155 patients from a single institution. Leukemia 2006; 20 (01) 55-60
  • 40 Elliott MA, Pardanani A, Lasho TL, Schwager SM, Tefferi A. Thrombosis in myelofibrosis: prior thrombosis is the only predictive factor and most venous events are provoked. Haematologica 2010; 95 (10) 1788-1791
  • 41 Finazzi MC, Carobbio A, Cervantes F. et al. CALR mutation, MPL mutation and triple negativity identify patients with the lowest vascular risk in primary myelofibrosis. Leukemia 2015; 29 (05) 1209-1210
  • 42 Saliba W, Mishchenko E, Cohen S, Rennert G, Preis M. Association between myelofibrosis and thromboembolism: a population-based retrospective cohort study. J Thromb Haemost 2020; 18 (04) 916-925
  • 43 Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98 (05) 801-821
  • 44 Guadall A, Lesteven E, Letort G. et al. Endothelial cells harbouring the JAK2–V617F mutation display pro-adherent and pro-thrombotic features. Thromb Haemost 2018; 118 (09) 1586-1599
  • 45 Tefferi A, Pardanani A. Myeloproliferative neoplasms: a contemporary review. JAMA Oncol 2015; 1 (01) 97-105
  • 46 Rosti V, Villani L, Riboni R. et al; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative (AGIMM) investigators. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood 2013; 121 (02) 360-368
  • 47 Kato Y, Hayashi T, Sehara Y. et al. Ischemic stroke with essential thrombocythemia: a case series. J Stroke Cerebrovasc Dis 2015; 24 (04) 890-893
  • 48 Das S, Deb A, Pal T. Antithrombotic management in ischemic stroke with essential thrombocythemia: current evidence and dilemmas. Med Princ Pract 2021; 30 (05) 412-421
  • 49 Pósfai É, Marton I, Szőke A. et al. Stroke in essential thrombocythemia. J Neurol Sci 2014; 336 (1-2): 260-262
  • 50 Mayer K, Bernlochner I, Braun S. et al. Aspirin treatment and outcomes after percutaneous coronary intervention: results of the ISAR-ASPI registry. J Am Coll Cardiol 2014; 64 (09) 863-871
  • 51 Gremmel T, Gisslinger B, Gisslinger H, Panzer S. Response to aspirin therapy in patients with myeloproliferative neoplasms depends on the platelet count. Transl Res 2018; 200: 35-42
  • 52 Gillet B, Ianotto JC, Mingant F. et al. Multiple electrode aggregometry is an adequate method for aspirin response testing in myeloproliferative neoplasms and differentiates the mechanisms of aspirin resistance. Thromb Res 2016; 142: 26-32
  • 53 Perrier-Cornet A, Ianotto JC, Mingant F, Perrot M, Lippert E, Galinat H. Decreased turnover aspirin resistance by bidaily aspirin intake and efficient cytoreduction in myeloproliferative neoplasms. Platelets 2018; 29 (07) 723-728
  • 54 Pascale S, Petrucci G, Dragani A. et al. Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target. Blood 2012; 119 (15) 3595-3603
  • 55 Wolach O, Sellar RS, Martinod K. et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 2018; 10 (436) eaan8292
  • 56 Schmidt S, Daniliants D, Hiller E, Gunsilius E, Wolf D, Feistritzer C. Increased levels of NETosis in myeloproliferative neoplasms are not linked to thrombotic events. Blood Adv 2021; 5 (18) 3515-3527
  • 57 Guy A, Garcia G, Gourdou-Latyszenok V. et al. Platelets and neutrophils cooperate to induce increased neutrophil extracellular trap formation in JAK2V617F myeloproliferative neoplasms. J Thromb Haemost 2024; 22 (01) 172-187
  • 58 Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, Islam MA. Thromboembolic adverse drug reactions in Janus kinase (JAK) inhibitors: Does the inhibitor specificity play a role?. Int J Mol Sci 2021; 22 (05) 2449
  • 59 Rajasimhan S, Pamuk O, Katz JD. Safety of Janus kinase inhibitors in older patients: a focus on the thromboembolic risk. Drugs Aging 2020; 37 (08) 551-558
  • 60 Yates M, Mootoo A, Adas M. et al. Venous thromboembolism risk with JAK inhibitors: a meta-analysis. Arthritis Rheumatol 2021; 73 (05) 779-788
  • 61 Campanaro F, Zaffaroni A, Cacioppo E. et al. Venous and arterial thromboembolic risk of Janus kinase inhibitors: a systematic review with meta-analysis. Rheumatology (Oxford) 2023; 62 (10) 3245-3255
  • 62 Samuelson BT, Vesely SK, Chai-Adisaksopha C, Scott BL, Crowther M, Garcia D. The impact of ruxolitinib on thrombosis in patients with polycythemia vera and myelofibrosis: a meta-analysis. Blood Coagul Fibrinolysis 2016; 27 (06) 648-652
  • 63 Masciulli A, Ferrari A, Carobbio A, Ghirardi A, Barbui T. Ruxolitinib for the prevention of thrombosis in polycythemia vera: a systematic review and meta-analysis. Blood Adv 2020; 4 (02) 380-386
  • 64 Rungjirajittranon T, Owattanapanich W, Ungprasert P, Siritanaratkul N, Ruchutrakool T. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer 2019; 19 (01) 184
  • 65 Kucine N. Myeloproliferative neoplasms in children, adolescents, and young adults. Curr Hematol Malig Rep 2020; 15 (02) 141-148
  • 66 Campbell PJ, Bareford D, Erber WN. et al. Reticulin accumulation in essential thrombocythemia: prognostic significance and relationship to therapy. J Clin Oncol 2009; 27 (18) 2991-2999
  • 67 Moore SF, Hunter RW, Harper MT. et al. Dysfunction of the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway underlies ex vivo platelet hypoactivity in essential thrombocythemia. Blood 2013; 121 (07) 1209-1219
  • 68 Rottenstreich A, Kleinstern G, Krichevsky S, Varon D, Lavie D, Kalish Y. Factors related to the development of acquired von Willebrand syndrome in patients with essential thrombocythemia and polycythemia vera. Eur J Intern Med 2017; 41: 49-54
  • 69 Jones E, Dillon B, Swan D, Thachil J. Practical management of the haemorrhagic complications of myeloproliferative neoplasms. Br J Haematol 2022; 199 (03) 313-321
  • 70 Hultcrantz M, Wilkes SR, Kristinsson SY. et al. Risk and cause of death in patients diagnosed with myeloproliferative neoplasms in Sweden between 1973 and 2005: a population-based study. J Clin Oncol 2015; 33 (20) 2288-2295