Subscribe to RSS
DOI: 10.1055/a-2412-9738
Brønsted Acidic Ionic Liquid: An Efficient Organocatalyst for the Synthesis of Pyrrolo[1,2-a]indoles under Neat Conditions
A.M. acknowledges financial support from the CSIR-Major Research Project [Ref. No. 02(0383)/19/EMR-II]. S.S. is grateful to the Russian Science Foundation (# 24-23-00516).
Abstract
A new synthetic approach has emerged for constructing 9H-pyrrolo[1,2-a]indole scaffolds by the reactions between indoles and chalcones under metal- and solvent-free conditions at 80 °C. The reaction occurs smoothly in the presence of a Brønsted acidic ionic liquid, 1-methyl-3-(4-sulfobutyl)-1H-imidazol-3-ium tosylate, as a catalyst, permitting the synthesis of the desired products with satisfactory yields. The developed protocol is applicable to the construction of biologically important pyrrolo[1,2-a]indole derivatives from easily accessible chalcones having various substituents. The process commences with Michael addition to chalcones, followed by annulations induced by the elimination of a water molecule, yielding the 9H-pyrrolo[1,2-a]indole scaffolds. Several control experiments were carried out to achieve a better understanding of the reaction pathway. The feasibility of recycling the catalyst was also demonstrated. This method produces water as the sole byproduct and represents a green synthetic protocol. The clean reaction, easily accessible reactants, and the metal- and solvent-free and environmentally friendly reaction conditions are the notable advantages of this procedure.
Key words
ionic liquids - pyrrolo[1,2-a]indoles - solvent-free reaction - metal-free reaction - green chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2412-9738.
- Supporting Information
Publication History
Received: 13 July 2024
Accepted after revision: 10 September 2024
Accepted Manuscript online:
10 September 2024
Article published online:
01 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structure, Reactions Synthesis and Applications, 2nd ed. Wiley-VCH; : 2003
- 2 Comprehensive Heterocyclic Chemistry III. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008
- 3 Sanda F, Nakai T, Kobayashi N, Masuda T. Macromolecules 2004; 37: 2703
- 4 Häussler M, Liu J, Zheng R, Lam JW. Y, Qin A, Tang BZ. Macromolecules 2007; 40: 1914
- 5 Martins MA. P, Frizzo CP, Moreira DN, Buriol L, Machado P. Chem. Rev. 2009; 109: 4140
- 6 Kakadiya R, Dong H, Lee P.-C, Kapuriya N, Zhang X, Chou T.-C, Lee T.-C, Kapuriya K, Shah A, Su T.-L. Bioorg. Med. Chem. 2009; 17: 5614
- 7 Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B. Chem. Rev. 2005; 105: 739
- 8 Bradner WT. Cancer Treat. Rev. 2001; 27: 35
- 9 Tomasz M, Palom Y. Pharmacol. Ther. 1997; 76: 73
- 10 Calvert MB, Sperry J. Org. Biomol. Chem. 2016; 14: 5728
- 11 Dethe DH, Erande RD, Ranjan A. J. Org. Chem. 2013; 78: 10106
- 12 Colandrea VJ, Rajaraman S, Jimenez LS. Org. Lett. 2003; 5: 785
- 13 Yoshihara T, Druzhinin SI, Zachariasse KA. J. Am. Chem. Soc. 2004; 126: 8535
- 14 Shelke YG, Hande PE, Gharpure SJ. Org. Biomol. Chem. 2021; 19: 7544
- 15 Schweizer EE, Light KK. J. Org. Chem. 1966; 31: 870
- 16 Sun Y, Qiao Y, Zhao H, Li B, Chen S. J. Org. Chem. 2016; 81: 11987
- 17 Zhang M, Liao L, Yu S, Liao Y, Xu X, Yuan W, Zhang X. J. Heterocycl. Chem. 2017; 54: 965
- 18 Wood K, Black DStC, Kumar N. Tetrahedron Lett. 2009; 50: 574
- 19 Li H, Wang Z, Zu L. RSC Adv. 2015; 5: 60962
- 20 Wei P, Pan X, Chen C.-Y, Li H.-Y, Yan X, Li C, Chu Y.-H, Yan B. Chem. Soc. Rev. 2021; 50: 13609
- 21 Sarkar A, Santra S, Kundu SK, Hajra A, Zyryanov GV, Chupakhin ON, Charushin VN, Majee A. Green Chem. 2016; 18: 4475
- 22 Mahato S, Santra S, Chatterjee R, Zyryanov GV, Hajra A, Majee A. Green Chem. 2017; 19: 3282
- 23 Samanta S, Chatterjee R, Sarkar S, Pal S, Mukherjee A, Butorin II, Konovalova OA, Choudhuri T, Chakraborty K, Santra S, Zyryanov GV, Majee A. Org. Biomol. Chem. 2022; 20: 9161
- 24 Sarkar S, Pal S, Santra S, Zyryanov GV, Majee A. J. Org. Chem. 2024; 89: 8137
- 25 Sarkar S, Pal S, Mukherjee A, Santra S, Zyryanov GV, Majee A. J. Org. Chem. 2024; 89: 1473
- 26 Pal S, Sarkar S, Mukherjee A, Kundu A, Sen A, Rath J, Santra S, Zyryanov GV, Majee A. Green Chem. 2023; 25: 9847
- 27 Du Z, Li Z, Deng Y. Synth. Commun. 2005; 35: 1343
- 28 Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Adv. Synth. Catal. 2021; 363: 5300
- 29 Lorton C, Voituriez A. Eur. J. Org. Chem. 2019; 2019: 5133
- 30 Zhao Y, Li S, Fan Y, Guo X, Jiao X, Tian L, Sun X. Eur. J. Org. Chem. 2021; 2021: 4358
- 31 Zhu Y.-S, Yuan B.-B, Guo J.-M, Jin S.-J, Dong H.-H, Wang Q.-L, Bu Z.-W. J. Org. Chem. 2017; 82: 5669
- 32 Rádai Z, Kiss NZ, Keglevich G. Curr. Org. Chem. 2018; 22: 533
- 33 Gu D.-g, Ji S.-j, Wang H.-x, Xu Q.-y. Synth. Commun. 2008; 38: 1212
- 34 Yu C.-J, Liu C.-J. Molecules 2009; 14: 3222
- 35 Pyrrolo[1,2-a]indoles 3a–s; General Procedure An oven-dried tube equipped with a magnetic stirrer bar was charged with the appropriate 3-substituted indole 1 (0.6 mmol), chalcone 2 (0.5 mmol), and BAIL-1 (10 mol%), and the mixture was stirred at 80 °C under open-air conditions for two hours until the substrates were completely consumed (TLC). H2O was added, and the mixture was extracted with EtOAc (×3). The extracts were dried (Na2SO4) and concentrated under vacuum, and the crude product was purified by column chromatography (silica gel). 1-(2,6-Dichlorophenyl)-9-methyl-3-phenyl-9H-pyrrolo[1,2-a]indole (3b) Red gummy material; yield: 158 mg (81%); Rf = 0.40 (PE–EtOAc, 98:4). 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 7.2 Hz, 2 H), 7.48–7.34 (m, 6 H), 7.19 (t, J = 8 Hz, 2 H), 7.15–7.06 (m, 2 H), 6.37 (s, 1 H), 4.20–4.14 (m, 1 H), 1.26 (d, J = 7.2 Hz, 3 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 141.3, 141.2, 141.0, 136.3, 135.7, 133.9, 132.9, 129.1, 128.4 (2 C), 128.2, 128.0, 127.7, 127.4, 127.2, 124.6, 123.3, 115.7, 112.9, 112.0, 36.4, 17.2. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H17Cl2NNa: 412.0630; found: 412.0639.