Subscribe to RSS
DOI: 10.1055/a-2422-1416
Sodium Metabisulfite Mediated Synthesis of Bis(pyrazolo[1,5-a] pyrimidin-3-yl)methanes from Pyrazolo[1,5-a]pyrimidines with Dimethyl Sulfoxide as a C1 Synthon
T.C. gratefully acknowledges financial support from the Science and Engineering Research Board (SERB), Govt. India (File No. CRG/2023/003045) and Council of Scientific and Industrial Research (CSIR), Govt. of India (File No. 02(0390)/21/EMR-II).
Dedicated to Professor Brindaban C. Ranu on the occasion of his 75th birthday.
Abstract
We report an unprecedented synthesis of bis(pyrazolo[1,5-a]pyrimidin-3-yl)methanes, a new class of di(hetaryl)methanes, from pyrazolo[1,5-a]pyrimidines by using DMSO as a C1 synthon (methylene source). The transformation is mediated by sodium metabisulfite (Na2S2O5), which plays a crucial role in the presence of acetic acid as a promoter. A wide variety of bis(pyrazolo[1,5-a]pyrimidin-3-yl)methanes were synthesized in moderate to good yields of up to 90%. Mechanistic studies suggested that the reaction follows an ionic pathway, probably involving a methyl(methylene)sulfonium ion as an active electrophilic species formed in situ by the reaction of DMSO with Na2S2O5.
Key words
sodium metabisulfite - pyrazolopyrimidines - bispyrazolopyrimidinylmethanes - C1 synthons - DMSO - metal-free reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2422-1416.
- Supporting Information
Publication History
Received: 31 August 2024
Accepted after revision: 25 September 2024
Accepted Manuscript online:
25 September 2024
Article published online:
18 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Ma F, Li J, Zhang S, Gu Y, Tan T, Chen W, Wang S, Xu H, Yang G, Lerner RA. ACS Catal. 2022; 12: 1639
- 2 Rashidinia A, Dinari M. New J. Chem. 2023; 47: 17174
- 3a Dethe DH, Shukla M, Dherange BD. Org. Lett. 2020; 22: 5778
- 3b Moghaddam FM, Tavakoli G, Saeednia B. ChemistrySelect 2017; 2: 1316
- 4 Hammouda MM, Gaffer HE, Elattar KM. RSC Med. Chem. 2022; 13: 1150
- 5 Cherukupalli S, Karpoormath R, Chandrasekaran B, Hampannavar GA, Thapliyal N, Palakollu VN. Eur. J. Med. Chem. 2017; 126: 298
- 6 Starykov H, Bezvikonnyi O, Leitonas K, Simokaitiene J, Volyniuk D, Skuodis E, Keruckiene R, Grazulevicius JV. Materials 2024; 17: 1357
- 7 Tigreros A, Macías M, Portilla J. Dyes Pigm. 2021; 184: 108730
- 8 Tigreros A, Macías M, Portilla J. ChemPhotoChem 2022; 6: e202200133
- 9 Bouihi F, Schmaltz B, Mathevet F, Kreher D, Faure-Vincent J, Yildirim C, Elhakmaoui A, Bouclé J, Akssira M, Tran-Van F, Abarbri M. Materials 2022; 15: 7992
- 10 Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. J. Org. Chem. 2023; 88: 4187
- 11 Choudhuri T, Paul S, Das S, Pathak DD, Bagdi AK. J. Org. Chem. 2023; 88: 8992
- 12 Chillal AS, Bhawale RT, Kshirsagar UA. ChemistrySelect 2024; 9: e202304815
- 13 Chillal AS, Bhawale RT, Kshirsagar UA. RSC Adv. 2024; 14: 13095
- 14 Bedford RB, Durrant SJ, Montgomery M. Angew. Chem. Int. Ed. 2015; 54: 8787
- 15 Castillo J.-C, Tigreros A, Portilla J. J. Org. Chem. 2018; 83: 10887
- 16 Pattanayak P, Satyanarayana AN. V, Chatterjee T. J. Org. Chem. 2024; 89: 13215
- 17a Zhong P, Zhang L, Luo N, Liu J. Catalysts 2023; 13: 761
- 17b Diao X, Yang D, Yang Q, Cai X. Youji Huaxue 2021; 41: 1434
- 18 Xiang S, Chen H, Liu Q. Tetrahedron Lett. 2016; 57: 3870
- 19 Lu H, Tong Z, Peng L, Wang Z, Yin SF, Kambe N, Qiu R. Top. Curr. Chem. 2022; 380: 55
- 20a Zhang XY, Liu K, Li S, Li Y, Wu Y, Li X, Ran X, Liu A, Yuan J. Tetrahedron Lett. 2023; 126: 154623
- 20b Liu Y.-F, Ji P.-Y, Xu J.-W, Hu Y.-Q, Liu Q, Luo W.-P, Guo CC. J. Org. Chem. 2017; 82: 7159
- 20c Zhang X, Zhou Z, Xu H, Xu X, Yu X, Yi W. Org. Lett. 2019; 21: 7248
- 21 Li J.-Q, Tan H.-L, Ma D.-D, Zhu X.-X, Cui H.-L. J. Org. Chem. 2021; 86: 10118
- 22a Mukherjee N, Chatterjee T. J. Org. Chem. 2021; 86: 7881
- 22b Li X, Wang X, Li Y, Xiao J, Du Y. Org. Biomol. Chem. 2022; 20: 4471
- 23 Rohe S, Révol G, Marmin T, Barriault D, Barriault L. J. Org. Chem. 2020; 85: 2806
- 24 Pramanik MM. D, Rastogi N. Chem. Commun. 2016; 52: 8557
- 25 Shen T, Huang X, Liang Y.-F, Jiao N. Org. Lett. 2015; 17: 6186
- 26a Cui H.-L. Molecules 2022; 27: 8480
- 26b Jones-Mensah E, Karki M, Magolan J. Synthesis 2016; 48: 1421
- 27 Patel OP. S, Anand D, Maurya RK, Yadav PP. J. Org. Chem. 2016; 81: 7626
- 28 Vodnala N, Singh S, Hazra CK. J. Org. Chem. 2022; 87: 10044
- 29a Mukherjee N, Chatterjee T. Green Chem. 2021; 23: 10006
- 29b Mukherjee N, Satyanarayana AN. V, Singh P, Dixit M, Chatterjee T. Green Chem. 2022; 24: 7029
- 29c Mukherjee N, Chatterjee T. Adv. Synth. Catal. 2023; 365: 2255
- 29d Mukherjee N, Chatterjee T. Green Chem. 2023; 25: 8798
- 29e Pattanayak P, Chatterjee T. J. Org. Chem. 2023; 88: 5420
- 29f Satyanarayana AN. V, Mukherjee N, Chatterjee T. Green Chem. 2023; 25: 779
- 29g Satyanarayana AN. V, Pattanayak P, Chatterjee T. J. Org. Chem. 2024; 89: 11455
- 29h Naresh A, Keerthana HS, Mukherjee N, Chatterjee T. Chem. Commun. 2024; 60: 7057
- 29i Satyanarayana AN. V, Chatterjee T. J. Org. Chem. 2024; 89: 12439
- 30 Paul TK, Sathpathy U, Konar RS. J. Appl. Polym. Sci. 1982; 27: 1501
- 31 3,3′-Methylenebis(2-methyl-7-phenylpyrazolo[1,5-a]pyrimidine) (2c); Typical Procedure An oven-dried round-bottomed flask was charged with 2-methyl-7-phenylpyrazolo[1,5-a]pyrimidine (1c; 0.5 mmol, 105 mg), Na2S2O5 (284.7 mg, 1.5 mmol, 3 equiv), and AcOH (6 μL, 0.1 mmol, 0.2 equiv). DMSO (5 mL) was added, and the mixture was stirred at 120 °C for 16 h until the reaction was complete (TLC). The resulting solution was extracted with EtOAc (3 × 10 mL), and the combined organic layer was washed with ice-cold water (3 × 10 mL). The organic layer was dried (Na2SO4), and the solvent was evaporated under reduced pressure to afford a crude product that was purified by column chromatography (silica gel, 20% EtOAc–hexane) to give a yellow solid; yield: 0.092 g (85%); mp 190–192 °C. IR (neat): 2921.28, 2851.43 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.47 (d, J = 4.3 Hz, 2 H), 8.08–8.01 (m, 4 H), 7.56–7.50 (m, 6 H), 6.76 (d, J = 4.3 Hz, 2 H), 4.40 (s, 2 H), 2.40 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 153.96, 147.83, 147.69, 145.77, 131.33, 130.80, 129.17, 128.59, 106.74, 106.17, 77.00, 15.63, 13.39. HRMS (ESI): m/z [M + H]+ calcd for C27H23N6: 431.1984; found: 431.2000.