Subscribe to RSS
DOI: 10.1055/a-2441-3612
Nitrogen-Centered Radicals in Visible-Light-Promoted Reactions
M.F.B. thanks the Ministero dell’Università e della Ricerca (MUR) (Ministry of University and Research) (Project PRIN2022 ‘BEST-CAT’), financed by the European Union (NextGeneration EU), for a postdoctoral fellowship. F.F. thanks the Ministero dell’Ambiente e della Sicurezza Energetica (MITE) (Ministry of the Environment and Security) (Project ‘Innovative Recycling Critical Raw Materials – RAEE’) for a postdoctoral fellowship. F.M. is grateful for funding from the Ministero dell’Università e della Ricerca (MUR), Multilayered Urban Sustainability Action (MUSA) Project, funded by the European Union (NextGeneration EU), under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment Line 1.5: Strengthening of Research Structures and Creation of R&D ‘innovation ecosystems’, set up of ‘territorial leaders in R&D’.
Abstract
Nitrogen-centered radicals (NCRs) have been known in the literature since the beginning of the 1900s, but only with the spread of photoredox catalysis, and in particular visible-light-mediated radical processes, has nitrogen-radical chemistry become more accessible via the in situ generation of such radicals under mild conditions. Historically, unlike their carbon counterparts, nitrogen radicals were not utilized widely in academia or industry due to a lack of efficient strategies for their production. Nowadays, NCRs are more established, and this graphical review highlights key publications from the literature, categorizing them by both the type of NCR and the type of reaction. Such nitrogen radicals can be divided into four different categories according to their electronic configuration, orbital structure and chemical behavior. Additionally, the reactivity of these radicals is mostly exploited via four main types of process: (i) intramolecular cyclization, (ii) intramolecular hydrogen atom abstraction, (iii) Norrish type I fragmentation, and (iv) intermolecular addition to π systems.
Key words
nitrogen radicals - photoredox catalysis - visible-light-driven reactions - amidyl radicals - cyclizations - addition to π systems - hydrogen atom transferPublication History
Received: 12 July 2024
Accepted after revision: 20 September 2024
Accepted Manuscript online:
14 October 2024
Article published online:
27 November 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 1b Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
- 1c Pratley C, Fenner S, Murphy JA. Chem. Rev. 2022; 122: 8181
- 1d Kärkäs MD. ACS Catal. 2017; 7: 4999
- 2a Newcomb M, Deeb TM. J. Am. Chem. Soc. 1987; 109: 3163
- 2b Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
- 2c Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR. J. Am. Chem. Soc. 2014; 136: 12217
- 2d Newcomb M, Deeb TM, Marquardt DJ. Tetrahedron 1990; 46: 2317
- 2e Newcomb M, Marquardt DJ, Deeb TM. Tetrahedron 1990; 46: 2329
- 2f Newcomb M, Marquardt DJ, Kumar MU. Tetrahedron 1990; 46: 2345
- 2g Hu J, Wang J, Nguyen TH, Zheng N. Beilstein J. Org. Chem. 2013; 9: 1977
- 3a Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
- 3b Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
- 3c Cai S.-H, Xie JH, Song S, Ye L, Feng C, Loh T.-P. ACS Catal. 2016; 6: 5571
- 4a Davies J, Booth SG, Essafi S, Dryfe RA. W, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
- 4b Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
- 4c Matsushita Y, Ochi R, Tanaka Y, Koike T, Akita M. Org. Chem. Front. 2020; 7: 1243
- 5a Newcomb M, Esker JL. Tetrahedron Lett. 1991; 32: 1035
- 5b Hu X.-Q, Chen J.-R, Wei Q, Liu F.-L, Deng Q.-H, Beauchemin AM, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 12163
- 6a Choi GJ, Knowles RR. J. Am. Chem. Soc. 2015; 137: 9226
- 6b Davies J, Svejstrup TD, Reina DF, Sheikh NS, Leonori D. J. Am. Chem. Soc. 2016; 138: 8092
- 7a Hu X.-Q, Chen J, Chen J.-R, Yan D.-M, Xiao W.-J. Chem. Eur. J. 2016; 22: 14141
- 7b Zhao Q.-Q, Hu X.-Q, Yang M.-N, Chen J.-R, Xiao W.-J. Chem. Commun. 2016; 52: 12749
- 7c Martínez C, Bosnidou AE, Allmendinger S, Muñiz K. Chem. Eur. J. 2016; 22: 9929
- 8a Ren X, Guo Q, Chen J, Xie H, Xu Q, Lu Z. Chem. Eur. J. 2016; 22: 18695
- 8b Hu X.-Q, Qi X, Chen J.-R, Zhao Q.-Q, Wei Q, Lan Y, Xiao W.-J. Nat. Commun. 2016; 7: 11188
- 8c Chen J, Guo H.-M, Zhao Q.-Q, Chen J.-R, Xiao W.-J. Chem. Commun. 2018; 54: 6780
- 9a Roos CB, Demaerel J, Graff DE, Knowles RR. J. Am. Chem. Soc. 2020; 142: 5974
- 9b Zheng D, Jana K, Alasmary FA, Daniliuc CG, Studer A. Org. Lett. 2021; 23: 7688
- 10a Newcomb M, Kumar MU. Tetrahedron Lett. 1990; 31: 1675
- 10b Wang JD, Liu Y.-X, Xue D, Wang C, Xiao J. Synlett 2014; 25: 2013
- 11a Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR. Science 2017; 355: 727
- 11b Miller DC, Ganley JM, Musacchio AJ, Sherwood TC, Ewing WR, Knowles RR. J. Am. Chem. Soc. 2019; 141: 16590
- 11c Svejstrup TD, Ruffoni A, Valentin FJ, Aubert M, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 14948
- 11d Ruffoni A, Julià F, Svejstrup TD, McMillan AJ, Douglas JJ, Leonori D. Nat. Chem. 2019; 11: 426
- 12a Ham WS, Hillenbrand J, Jacq J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 532
- 12b Rössler SL, Jelier BJ, Tripet PF, Shemet A, Jeschke G, Togni A, Carreira EM. Angew. Chem. Int. Ed. 2019; 58: 526
- 13a Hillenbrand J, Ham WS, Ritter T. Org. Lett. 2019; 21: 5363
- 13b Govaerts S, Angelini L, Hampton C, Malet-Sanz L, Ruffoni A, Leonori D. Angew. Chem. Int. Ed. 2020; 59: 15021
- 14a Cecere G, König CM, Alleva JL, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 11521
- 14b Boselli MF, Intini N, Puglisi A, Raimondi L, Rossi S, Benaglia M. Eur. J. Org. Chem. 2023; 26: e202201309
- 14c Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 14d Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 14e Sambiagio C, Noël T. Trends Chem. 2020; 2: 92
- 15a Kim H, Kim T, Lee DG, Roha SW, Lee C. Chem. Commun. 2014; 50: 9273
- 15b Qin Q, Yu S. Org. Lett. 2014; 16: 3504
- 15c Song L, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2014; 20: 14231
- 15d Song L, Luo S, Cheng J.-P. Org. Chem. Front. 2016; 3: 447
- 16a Allen LJ, Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
- 16b Miyazawa K, Koike T, Akita M. Chem. Eur. J. 2015; 21: 11677
- 16c Greulich TW, Daniliuc CG, Studer A. Org. Lett. 2015; 17: 254
- 16d Qin Q, Rena D, Yu S. Org. Biomol. Chem. 2015; 13: 10295
- 16e Tong K, Liu X, Zhang Y, Yu S. Chem. Eur. J. 2016; 22: 15669
- 17a Ito E, Fukushima T, Kawakami T, Murakami K, Itami K. Chem 2017; 2: 383
- 17b Shen X, Harms K, Marsch M, Meggers E. Chem. Eur. J. 2016; 22: 9102
- 18a Margrey KA, Levens A, Nicewicz DA. Angew. Chem. Int. Ed. 2017; 56: 15644
- 18b Qin Q, Han Y.-Y, Jiao Y.-Y, He Y, Yu S. Org. Lett. 2017; 19: 2909
- 18c An X.-D, Jiao Y.-Y, Zhang H, Gao Y, Yu S. Org. Lett. 2018; 20: 401
- 19a Jiang H, Studer A. Angew. Chem. Int. Ed. 2018; 57: 10707
- 19b Jiang H, Seidler G, Studer A. Angew. Chem. Int. Ed. 2019; 58: 16528
- 19c Chinn AJ, Sedillo K, Doyle AG. J. Am. Chem. Soc. 2021; 143: 18331
- 20a Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
- 20b Chu JC. K, Rovis T. Nature 2016; 539: 272
- 20c Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
- 20d Tassone DM, Boyce E, Guyer J, Nuzum D. Clin. Ther. 2007; 29: 26
- 21a Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H. Org. Lett. 2017; 19: 1994
- 21b Li Y, Mao R, Wu J. Org. Lett. 2017; 19: 4472
- 21c Spinnato D, Zhou W, Melchiorre P. J. Am. Chem. Soc. 2021; 143: 12304
- 22 Shu W, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1881
- 23a Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 744
- 23b Jiang H, Studer A. Angew. Chem. Int. Ed. 2018; 57: 1692