Subscribe to RSS
DOI: 10.1055/a-2446-3557
Dearomative Carbonylations of Arenes via Bifunctional Coordination to Cr(CO)3
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (22271251 and 22471238), and the Fundamental Research Funds for the Central Universities (226-2023-00016 and 226-2024-00003).
Abstract
Carbonylation reactions serve as powerful tools to construct useful carbonyl compounds with high efficiency and atom economy. Compared with the well-developed carbonylation chemistry for alkenes, the dearomative carbonylation of arenes is largely underexplored, possibly owing to the severe challenge in overcoming resonance stabilization of arene π-systems. Bifunctional coordination to tricarbonylchromium not only offers a reliable strategy to activate inert benzene π-bonds towards dearomatizations but also provides the CO source for the carbonylation process. Herein, we highlight the recent progress in dearomative carbonylations of chromium-bound arenes through either the conventional nucleophile-electrophile addition mode or the newly-developed umpolung-enabled nucleophile-nucleophile addition mode under mild CO-gas-free conditions. Given the great abundance and diversity of arene substrates, we hope this review will attract more attention to this new direction of carbonylation chemistry.
1 Introduction
2 Dearomative Carbonylations of Arenes via Nucleophile-Electrophile Addition
3 Dearomative Carbonylations of Arenes via Nucleophile-Nucleophile Addition
4 Conclusion
Key words
arene - carbonylation - dearomatization - η6-coordination - chromium - aminocarbonylation - alkoxycarbonylation - carbamoylationPublication History
Received: 25 September 2024
Accepted: 21 October 2024
Accepted Manuscript online:
21 October 2024
Article published online:
12 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Colquhoun HM, Thompson DJ, Twigg MV. Carbonylation: Direct Synthesis of Carbonyl Compounds 1991
- 2a Wu X.-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
- 2b Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
- 2c Folster CP, Harkins RP, Lo S.-Y, Sachs JD, Tonks IA. Trends Chem. 2021; 3: 469
- 2d Cai S, Zhang H, Huang H. Trends Chem. 2021; 3: 218
- 3 Yang J, Liu J, Neumann H, Franke R, Jackstell R, Beller M. Science 2019; 366: 1514
- 4a Schreiber SL. Science 2000; 287: 1964
- 4b Tan D. Nat. Chem. Biol. 2005; 1: 74
- 4c Galloway W, Isidro-Llobet A, Spring D. Nat. Commun. 2010; 1: 80
- 5a Wertjes WC, Southgate EH, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
- 5b Huck CJ, Sarlah D. Chem 2020; 6: 1589
- 6 Liebov BK, Harman WD. Chem. Rev. 2017; 117: 13721
- 7 Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917
- 8 Rosillo M, Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2007; 36: 1589
- 9 Wang M.-Y, Zeng W.-L, Chen L, Yuan Y.-F, Li W. Angew. Chem. Int. Ed. 2024; 63: e202403917
- 10 Kündig EP, Simmons DP. J. Chem. Soc., Chem. Commun. 1983; 1320
- 11a Kündig EP, Cunningham AF. Jr, Paglia P, Simmons DP, Bernardinelli G. Helv. Chim. Acta 1990; 73: 386
- 11b Kündig EP, Bernardinelli G, Liu R, Ripa A. J. Am. Chem. Soc. 1991; 113: 9676
- 11c Kündig EP, Bellido A, Kaliappan KP, Pape AR, Radix S. Synlett 2003; 2407
- 12a Kündig EP, Ripa A, Bernardinelli G. Angew. Chem., Int. Ed. Engl. 1992; 31: 1071
- 12b Kündig EP, Amurrio D, Anderson G, Beruben D, Khan K, Ripa A, Ronggang L. Pure Appl. Chem. 1997; 69: 543
- 13 Kündig EP, Cannas R, Laxmisha M, Liu R, Tchertchian S. J. Am. Chem. Soc. 2003; 125: 5642
- 14 The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. John Wiley & Sons; New York: 2000
- 15a Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 15b Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 15c de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
- 16 Wang M.-Y, Wu C.-J, Zeng W.-L, Jiang X, Li W. Angew. Chem. Int. Ed. 2022; 61: e202210312
- 17 Pfletschinger A, Koch W, Schmalz H.-G. New J. Chem. 2001; 25: 446
- 18a Lawrence SA. In Amines: Synthesis, Properties and Applications . Cambridge University Press; Cambridge: 2004
- 18b Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008
- 19 Li Z.-J, Wang M.-Y, Li C.-Q, Zeng W.-L, Li W. Chem. Eur. J. 2023; 29: e202300776
- 20 Li C.-Q, Jiang X, Wang M.-Y, Zeng W.-L, Li W. CCS Chem. 2024; 6: 2066