RSS-Feed abonnieren
DOI: 10.1055/a-2501-4947
Cobalt-Catalyzed Three-Component Synthesis of α-Substituted N-Sulfonyl Amines via C(sp2)–H Bond Activation
Generous financial support by the Research Unit NanoKat at the RPTU Kaiserslautern-Landau and the DAAD (PhD scholarship to O. A. O.-I.) is gratefully acknowledged.

Abstract
Herein, we report a three-component synthesis of α-substituted N-sulfonyl amines from aryl aldehydes, primary sulfonamides, and (hetero)arenes as readily available building blocks. This method is based on the direct functionalization of (hetero)arenes via a cobalt-catalyzed C(sp2)–H bond activation. It enables the modular synthesis of highly substituted sulfonamides as interesting scaffolds for pharmaceutical applications in good yields with a high degree of structural diversity. The applicability of this method in the context of pharmaceutical research was demonstrated by the late-stage modification of active pharmaceutical ingredients and drug-like compounds. Overall, this process offers an interesting and atom-economical alternative to classical approaches for the preparation of α-arylated amines, such as the Petasis reactions or similar processes based on organometallic reagents.
Key word
multicomponent reaction - sulfonamide - C–H bond activation - cobalt catalysis - α-substituted aminesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2501-4947.
- Supporting Information
Publikationsverlauf
Eingereicht: 18. November 2024
Angenommen nach Revision: 12. Dezember 2024
Accepted Manuscript online:
12. Dezember 2024
Artikel online veröffentlicht:
21. Januar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Mannich C, Krösche W. Arch. Pharm. 1912; 250: 647
- 2 Allochio Filho JF, Lemos BC, de Souza AC, Pinheiro S, Greco SJ. Tetrahedron 2017; 73: 6977
- 3 Hadj Mohamed A, Masurier N. Org. Chem. Front. 2023; 10: 1847
- 4 Paul J, Presset M, Le Gall E. Eur. J. Org. Chem. 2017; 2017: 2386
- 5a Halli J, Manolikakes G. Eur. J. Org. Chem. 2013; 2013: 7471
- 5b Schneider AE, Manolikakes G. J. Org. Chem. 2015; 80: 6196
- 5c Schneider AE, Beisel T, Shemet A, Manolikakes G. Org. Biomol. Chem. 2014; 12: 2356
- 5d Halli J, Schneider AE, Beisel T, Kramer P, Shemet A, Manolikakes G. Synthesis 2017; 49: 849
- 6a Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
- 6b Wu P, Givskov M, Nielsen TE. Chem. Rev. 2019; 119: 11245
- 7a Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
- 7b Farhi J, Lykakis IN, Kostakis GE. Catalysts 2022; 12: 660
- 8a Marques C, Brandão P. Catalysts 2023; 13: 1022
- 8b Gonzalez KJ, Cerione C, Stoltz BM. Chem. Eur. J. 2024; 30: e202401936
- 9 Rokade BV, Barker J, Guiry PJ. Chem. Soc. Rev. 2019; 48: 4766
- 10a Beisel T, Manolikakes G. Org. Lett. 2015; 17: 3162
- 10b Beisel T, Diehl AM, Manolikakes G. Org. Lett. 2016; 18: 4116
- 10c Jakob B, Diehl AM, Horst K, Kelm H, Manolikakes G. Front. Chem. 2023; 11: 1165618
- 10d Jakob B, Schneider N, Gengenbach L, Manolikakes G. Beilstein J. Org. Chem. 2023; 19: 719
- 11 Handbook of Functionalized Organometallics: Applications in Synthesis. Knochel P. Wiley-VCH; Weinheim: 2005
- 12a Luo Y, Wu J. Chem. Commun. 2010; 46: 3785
- 12b Diehl AM, Manolikakes G. ChemCatChem 2020; 12: 3463
- 13a Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 13b Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer L, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
- 13c de Jesus R, Hiesinger K, van Gemmeren M. Angew. Chem. Int. Ed. 2023; 62: e202306659
- 14a Wan J, Gan L, Liu Y. Org. Biomol. Chem. 2017; 15: 9031
- 14b Brandes DS, Ellman JA. Chem. Soc. Rev. 2022; 51: 6738
- 14c Nanda T, Mohanty SR, Ravikumar PC. Recent Advances in Multicomponent Reaction Through C–H Bond Functionalization. In Handbook of CH-Functionalization. Maiti D. John Wiley & Sons; Chichester: 2022
- 15a Beisel T, Kirchner J, Kaehler T, Knauer J, Soltani Y, Manolikakes G. Org. Biomol. Chem. 2016; 14: 5525
- 15b Xavier T, Rayapin C, Le Gall E, Presset M. Chem. Eur. J. 2019; 25: 13824
- 15c Lin M, Wu Y, Liu Z, Liang C, Li Q, Liu T. Chem. Commun. 2023; 59: 14431
- 15d Olu-Igbiloba OA, Sitzmann H, Manolikakes G. J. Org. Chem. 2024; 89: 6903
- 16a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 16b Ilies L. Bull. Chem. Soc. Jpn. 2021; 94: 404
- 17a Yoshino T, Ikemoto H, Matsunaga S, Kanai MA. Angew. Chem. Int. Ed. 2013; 52: 2207
- 17b Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Chem. Eur. J. 2013; 19: 9142
- 18a Tsai AS, Tauchert ME, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2011; 133: 1248
- 18b Li Y, Li B.-J, Wang W.-H, Huang W.-P, Zhang X.-S, Chen K, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 2115
- 18c Hesp KD, Bergman RG, Ellman JA. Org. Lett. 2012; 14: 2304
- 19 Chirila PG, Whiteoak CJ. Dalton Trans. 2017; 46: 9721
- 20 Yu D.-C, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
- 21 Ribière P, Declerck V, Martinez J, Lamaty F. Chem. Rev. 2006; 106: 2249
- 22 Isidro A, Latassa D, Giraud M, Álvarez M, Albericio F. Org. Biomol. Chem. 2009; 7: 2565
- 23 The unsuccessful reaction of sulfonamide 3s might be also related to the lability of the 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) under acidic conditions, see: Carpino LA, Shroff H, Triolo SA, Mansour EM. E, Wenschuh H, Albericio F. Tetrahedron Lett. 1993; 42: 7829
- 24a Scott KA, Njardarson JT. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms . In Topics in Current Chemistry (Z), Vol. 376. Jiang X. Springer; Cham: 2018: 5DOI: org/10.1007/s41061 -018-0184-5
- 24b Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 25a Kim KE, Kim AN, McCormick CJ, Stoltz BM. J. Am. Chem. Soc. 2021; 143: 16890
- 25b Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
- 26 Gordon DM. Am. J. Ophthalmol. 1958; 46: 41
- 27 McCormack PL. Drugs 2011; 71: 2457
- 28 Goldstein I, Burnett AL, Rosen RC, Park PW, Stecher VJ. Sex. Med. Rev. 2019; 7: 115
- 29 Marble A. Drugs 1971; 1: 109
- 30 Chaffman M, Heel RC, Brogden RN, Speight TM, Avery GS. Drugs 1984; 28: 189
- 31 Kumar G, Sekar G. RSC Adv. 2015; 5: 28292
- 32a Li Z, Jangra H, Chen Q, Mayer P, Ofial AR, Zipse H, Mayr H. J. Am. Chem. Soc. 2018; 140: 5500
- 32b Appel R, Mayr H. J. Am. Chem. Soc. 2011; 133: 8240
- 32c Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
- 33 Achuenu C, Carret S, Poisson J.-F, Berthiol F. Eur. J. Org. Chem. 2020; 2020: 5901
- 34 Ellman JA. Pure Appl. Chem. 2003; 75: 39
- 35a Xu W, Ye M. Synthesis 2022; 54: 4773
- 35b Zheng Y, Zheng C, Gu Q, You S.-L. Chem Catal. 2022; 2: 2965
- 36 Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
- 37 Rao X, Liu C, Qiu J, Jin Z. Org. Biomol. Chem. 2012; 10: 7875
- 38 Ackermann L, Lygin AV. Org. Lett. 2011; 13: 3332
- 39 Sun B, Yoshino T, Matsunaga S, Kanai MA. Adv. Synth. Catal. 2014; 356: 1491
- 40 Sun B, Yoshino T, Matsunaga S, Kanai MA. Chem. Commun. 2015; 51: 4659
For some representative examples from our group highlighted scope and limitations of these processes, see:
For some recent developments from our group, see:
For representative, general reviews on C–H-activation, see:
For reviews on the application of C–H-activation in multicomponent reactions, see: