Subscribe to RSS
DOI: 10.1055/a-2523-4762
Visible-Light-Driven Thiolate-Catalyzed Carboxylation of C(sp2)–H Bonds in Azines with Carbon Dioxide
Financial support was provided by the National Natural Science Foundation of China (22225106, 22101191, 22201027), Fundamental Research Funds from Sichuan University (2020SCUNL102), the China Scholarship Council (202206240054) and the Fundamental Research Funds for the Central Universities.

Abstract
Catalytic carboxylation of C–H bonds with CO2 represents an efficient strategy to synthesize highly valuable carboxylic acids from simple substrates, featuring high atom, step, and redox economies. Recently, our group was successful in developing a visible-light-driven thiolate-catalyzed carboxylation of C(sp2)–H bonds in azines with CO2. This strategy provides facile access to a range of valuable N-heteroarene carboxylic acids from readily available azines. Furthermore, the synthetic potential of this approach has been demonstrated through the synthesis of bioactive molecules and the modification of commonly used nitrogen ligands. Mechanistic studies suggest that the formation of an electron donor–acceptor complex between the thiolate and azine is a crucial factor in the activation of the azine.
Key words
carbon dioxide - photocatalysis - organocatalysis - carboxylation - C–H bond activation - carboxylic acidsPublication History
Received: 18 December 2024
Accepted after revision: 23 January 2025
Accepted Manuscript online:
23 January 2025
Article published online:
07 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Carbon Dioxide as Chemical Feedstock . Aresta M. Wiley-VCH; Weinheim: 2010
- 1b He L.-N. Carbon Dioxide Chemistry . Science Press; Beijing: 2013
- 2a Huang K, Sun C.-L, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
- 2b Chen Y.-G, Xu X.-T, Zhang K, Li Y.-Q, Zhang L.-P, Fang P, Mei T.-S. Synthesis 2018; 50: 35
- 2c Yan S.-S, Fu Q, Liao L.-L, Sun G.-Q, Ye J.-H, Gong L, Bo-Xue Y.-Z, Yu D.-G. Coord. Chem. Rev. 2018; 374: 439
- 2d Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
- 2e Yeung CS. Angew. Chem. Int. Ed. 2019; 58: 5492
- 2f Zhang Z, Ye J.-H, Ju T, Liao L.-L, Huang H, Gui Y.-Y, Zhou W.-J, Yu D.-G. ACS Catal. 2020; 10: 10871
- 2g Fan Z, Zhang Z, Xi C. ChemSusChem 2020; 13: 6201
- 2h Zhang L, Li Z, Takimoto M, Hou Z. Chem. Rec. 2020; 20: 494
- 2i Zhang G, Cheng Y, Beller M, Chen F. Adv. Synth. Catal. 2021; 363: 1583
- 2j Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Acc. Chem. Res. 2021; 54: 2518
- 2k Tortajada A, Börjesson M, Martin R. Acc. Chem. Res. 2021; 54: 3941
- 2l Mao B, Wei J.-S, Shi M. Chem. Commun. 2022; 58: 9312
- 2m Xiao W, Zhang J, Wu J. ACS Catal. 2023; 13: 15991
- 2n Sun G.-Q, Liao L.-L, Ran C.-K, Ye J.-H, Yu D.-G. Acc. Chem. Res. 2024; 57: 2728
- 3a Ackermann L. Angew. Chem. Int. Ed. 2011; 50: 3842
- 3b Tommasi I. Catalysts 2017; 7: 380
- 3c Gui Y.-Y, Zhou W.-J, Ye J.-H, Yu D.-G. ChemSusChem 2017; 10: 1337
- 3d Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem 2019; 12: 6
- 3e Pimparkar S, Dalvi AK, Koodan A, Maiti S, Al-Thabaiti SA, Mokhtar M, Dutta A, Lee YR, Maiti D. Green Chem. 2021; 23: 9283
- 4a Ghodsi R, Zarghi A, Daraei B, Hedayati MD. Bioorg. Med. Chem. 2010; 18: 1029
- 4b Madak JT, Cuthbertson CR, Miyata Y, Tamura S, Petrunak EM, Stuckey JA, Han Y, He M, Sun D, Showalter HD, Neamati N. J. Med. Chem. 2018; 61: 5162
- 4c Khan E. ChemistrySelect 2021; 6: 3041
- 5 Fuchs P, Hess U, Holst HH, Lund H. Acta Chem. Scand., Ser. B 1981; 35: 185
- 6a Khoshro H, Zare HR, Jafari AA, Gorji A. Electrochem. Commun. 2015; 51: 69
- 6b Ghobadi K, Zare HR, Khoshro H, Gorji A. J. Electrochem. Soc. 2016; 163: H240
- 7a Fu L, Li L, Cai Z, Ding Y, Guo X.-Q, Zhou L.-P, Yuan D, Sun Q.-F, Li G. Nat. Catal. 2018; 1: 469
- 7b Gao Y, Cai Z, Li S, Li G. Org. Lett. 2019; 21: 3663
- 8 Sun G.-Q, Yu P, Zhang W, Zhang W, Wang Y, Liao L.-L, Zhang Z, Li L, Lu Z, Yu D.-G, Lin S. Nature 2023; 615: 67
- 9 Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202214710
- 10a Lima CG. S, Lima TD, Duarte M, Jurberg ID, Paixão MW. ACS Catal. 2016; 6: 1389
- 10b Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
- 10c Li H, Liu Y, Chiba S. JACS Au 2021; 1: 2121
- 10d Wang S, Wang H, König B. J. Am. Chem. Soc. 2021; 143: 15530
- 11a Huang H, Ye J.-H, Zhu L, Ran C.-K, Miao M, Wang W, Chen H, Zhou W.-J, Lan Y, Yu B, Yu D.-G. CCS Chem. 2021; 3: 1746
- 11b Miao M, Zhu L, Zhao H, Song L, Yan S.-S, Liao L.-L, Ye J.-H, Lan Y, Yu D.-G. Sci. China Chem. 2023; 66: 1457
- 11c Zhang W, Chen Z, Jiang Y.-X, Liao L.-L, Wang W, Ye J.-H, Yu D.-G. Nat. Commun. 2023; 14: 3529
- 11d Xiao H.-Z, Yu B, Yan S.-S, Zhang W, Li X.-X, Bao Y, Luo S.-P, Ye J.-H, Yu D.-G. Chin. J. Catal. 2023; 50: 222
- 11e Yu B, Liu Y, Xiao H.-Z, Zhang S.-R, Ran C.-K, Song L, Jiang Y.-X, Li C.-F, Ye J.-H, Yu D.-G. Chem 2024; 10: 938
- 11f Liu Y, Xue G.-H, He Z, Yue J.-P, Pan M, Song L, Zhang W, Ye J.-H, Yu D.-G. J. Am. Chem. Soc. 2024; 146: 28350
- 12 Jiang Y.-X, Liao L.-L, Gao T.-Y, Xu W.-H, Zhang W, Song L, Sun G.-Q, Ye J.-H, Lan Y, Yu D.-G. Nat. Synth. 2024; 3: 394
- 13 Huang Y, Zhang Q, Hua L.-L, Zhan L.-W, Hou J, Li B.-D. Cell Rep. Phys. Sci. 2022; 3: 100994
- 14 Prabagar B, Yang Y, Shi Z. Chem. Soc. Rev. 2021; 50: 11249
- 15 Wallace TJ. J. Am. Chem. Soc. 1964; 86: 2018
- 16a Majhi J, Granados A, Matsuo B, Ciccone V, Dhungana RK, Sharique M, Molander GA. Chem. Sci. 2023; 14: 897
- 16b Alektiar SN, Han J, Dang Y, Rubel CZ, Wickens ZK. J. Am. Chem. Soc. 2023; 145: 10991