Subscribe to RSS
DOI: 10.1055/a-2533-1009
Pharmakotherapie von ABCA4-assoziierten Netzhautdystrophien
Pharmacotherapy of ABCA4-associated Retinal Dystrophies
Zusammenfassung
ABCA4-assoziierte Netzhautdystrophien, einschließlich des von Stargardt erstmals beschriebenen Morbus Stargardt umfassen eine heterogene Gruppe erblicher Netzhauterkrankungen, die durch Mutationen im ABCA4-Gen verursacht werden und rezessiv vererbt werden. Diese Erkrankungen führen aufgrund einer fortschreitenden Degeneration von Photorezeptoren und retinalem Pigmentepithel zu einem Sehverlust, für den es aktuell keine zugelassene Therapie gibt. Aufgrund der Fortschritte in den letzten Jahren und der gut verstandenen Pathobiologie existieren bereits vielversprechende Therapieansätze in der klinischen Entwicklungsphase, wobei pharmakologische Ansätze zu den am weitesten fortgeschrittenen Therapieoptionen gehören. Präklinische und klinische Studien zeigen Fortschritte bei der Entwicklung von Medikamenten, die das Potenzial haben, die Progression dieser Erkrankungen deutlich zu verlangsamen. Darunter befinden sich Wirkstoffe, die die Lipofuszin-Akkumulation in der Netzhaut verringern können, die Bildung toxischer Vitamin-A-Dimere verlangsamen oder Lipofuszin aus der Netzhaut entfernen können. Weitere Substanzen greifen in den Vitamin-A-Stoffwechsel im Sehzyklus ein, indem sie die verfügbare Menge an Vitamin A im Auge reduzieren, was zu einer geringeren Bildung toxischer Stoffwechselnebenprodukte führen sollte. Dieser Beitrag fasst die der ABCA4-assoziierten Netzhautdegeneration zugrunde liegenden Pathophysiologie zusammen und erläutert aktuelle pharmakologische Therapieansätze.
Abstract
ABCA4-associated retinal dystrophies, including Stargardtʼs disease, comprise a heterogeneous group of inherited retinal diseases caused by mutations in the ABCA4 gene and are inherited in an autosomal recessive manner. These diseases cause vision loss due to progressive degeneration of photoreceptors and retinal pigment epithelium, for which there is currently no approved treatment available. Based on the progress made in recent years and the well-understood pathobiology, promising therapeutic approaches have reached the clinical development phase, with pharmacological approaches being among the most advanced therapeutic options. Preclinical and clinical studies show progress in the development of drugs that have the potential to slow the progression of these diseases. Among these are compounds that have the potential to reduce lipofuscin accumulation in the retina, slow the formation of toxic vitamin A dimers or remove lipofuscin from the retina. Other substances interfere with the vitamin A metabolism in the visual cycle by reducing the amount of available vitamin A in the eye, which should lead to lower formation of toxic metabolic by-products. This article summarises the underlying pathophysiology of ABCA4-associated retinal degeneration and provides an overview of current pharmacological treatment approaches.
Publication History
Received: 26 December 2024
Accepted: 29 January 2025
Article published online:
24 March 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albrecht von Graefes Archiv für Ophthalmologie 1909; 71: 534-550
- 2 Allikmets R, Singh N, Sun H. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997; 15: 236-246
- 3 Cremers FPM, Lee W, Collin RWJ. et al. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79: 100861
- 4 Cideciyan AV, Aleman TS, Swider M. et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet 2004; 13: 525-534
- 5 Pan C, Banerjee K, Lehmann GL. et al. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc Natl Acad Sci U S A 2021; 118: e2100122118
- 6 Sparrow JR. Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration. Adv Exp Med Biol 2010; 703: 63-74
- 7 Roborel de Climens A, Tugaut B, Dias Barbosa C. et al. Living with Stargardt disease: insights from patients and their parents. Ophthalmic Genet 2021; 42: 150-160
- 8 Gong J, Cheung S, Fasso-Opie A. et al. The Impact of Inherited Retinal Diseases in the United States of America (US) and Canada from a Cost-of-Illness Perspective. Clin Ophthalmol 2021; 15: 2855-2866
- 9 Simon WA, Herrmann M, Klein T. et al. Soraprazan: setting new standards in inhibition of gastric acid secretion. J Pharmacol Exp Ther 2007; 321: 866-874
- 10 Julien S, Schraermeyer U. Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys. Neurobiol Aging 2012; 33: 2390-2397
- 11 Julien-Schraermeyer S, Illing B, Tschulakow A. et al. Penetration, distribution, and elimination of remofuscin/soraprazan in Stargardt mouse eyes following a single intravitreal injection using pharmacokinetics and transmission electron microscopic autoradiography: Implication for the local treatment of Stargardtʼs disease and dry age-related macular degeneration. Pharmacol Res Perspect 2020; 8: e00683
- 12 Taubitz T, Peters T, Pöschel S. et al. Removal of lipofuscin from the RPE of Abca4-/- mice with THPE: quantitative and toxicity studies. Invest Ophthalmol Vis Sci 2015; 56: 4199
- 13 Dhooge PPA, Möller PT, Meland N. et al. Repeatability of Quantitative Autofluorescence Imaging in a Multicenter Study Involving Patients With Recessive Stargardt Disease 1. Transl Vis Sci Technol 2023; 12: 1
- 14 Peters T, Stingl K, Klein W. et al. Remofuscin slows retinal thinning in Stargardt Disease (STGD1) – results from the Stargardt Remofuscin Treatment Trial (STARTT) a 2-year placebo-controlled study. Invest Ophthalmol Vis Sci 2024; 65: 2205
- 15 Stingl K, Hoyng C, Kempf M. et al. Evaluation of Local Rod and Cone Function in Stargardt Disease. Invest Ophthalmol Vis Sci 2022; 63: 6
- 16 Dhooge PPA, Möller PT, Boon CJF. et al. The STArgardt Remofuscin Treatment Trial (STARTT): design and baseline characteristics of enrolled Stargardt patients. Open Res Eur 2021; 1: 96
- 17 Radu RA, Hu J, Yuan Q. et al. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 2011; 286: 18593-18601
- 18 Jabri Y, Biber J, Diaz-Lezama N. et al. Cell-Type-Specific Complement Profiling in the ABCA4-/- Mouse Model of Stargardt Disease. Int J Mol Sci 2020; 21
- 19 Lenis TL, Sarfare S, Jiang Z. et al. Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci U S A 2017; 114: 3987-3992
- 20 Hu J, Pauer GJ, Hagstrom SA. et al. Evidence of complement dysregulation in outer retina of Stargardt disease donor eyes. Redox Biol 2020; 37: 101787
- 21 Jaffe GJ, Westby K, Csaky KG. et al. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology 2021; 128: 576-586
- 22 Khanani AM, Patel SS, Staurenghi G. et al. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. Lancet 2023; 402: 1449-1458
- 23 Kaufman Y, Ma L, Washington I. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem 2011; 286: 7958-7965
- 24 Ma L, Kaufman Y, Zhang J. et al. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem 2011; 286: 7966-7974
- 25 Charbel Issa P, Barnard AR, Herrmann P. et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A 2015; 112: 8415-8420
- 26 Scholl HP, DeBartolomeo G, Washington I. et al. ALK-001 (C20-D3-Vitamin A) slows the growth of atrophic lesions in ABCA4-related Stargardt Disease: Results of a Phase 2 placebo-controlled clinical trial (TEASE study). Invest Ophthalmol Vis Sci 2022; 63: 38
- 27 Gorin MB, Saad L, DeBartolomeo G. et al. Gildeuretinol Arrested Stargardt Disease, The TEASE-3 Study. Invest Ophthalmol Vis Sci 2024; 65: 3310
- 28 Kubota R, Birch DG, Gregory JK. et al. Randomised study evaluating the pharmacodynamics of emixustat hydrochloride in subjects with macular atrophy secondary to Stargardt disease. Br J Ophthalmol 2022; 106: 403-408
- 29 Kubota Pharmaceuticals Holdings Co. Ltd.. Kubota Vision Announces Top-Line Results from Phase 3 Clinical Trial of Emixustat in Patients with Stargardt Disease. 2022. https://www.kubotaholdings.co.jp/en/ir/docs/20220812_EN_topline_final.pdf Stand: 07.02.2025
- 30 Kubota Pharmaceuticals Holdings Co. Ltd.. Kubota Vision Announces Positive Post Hoc Analysis from Phase 3 Clinical Trial of Emixustat in Patients with Stargardt Disease. 2022. https://www.kubotaholdings.co.jp/en/ir/docs/20221003_EN_post%2520hoc%2520analysis_final4.pdf Stand: 07.02.2025
- 31 Kubota Pharmaceuticals Holdings Co. Ltd.. Correction: Japanese Retinitis Pigmentosa Society Public Interest Incorporated Association Submits a Petition to the PMDA, Requesting Early Approval of Emixustat Hydrochloride, a Potential Treatment for Stargardt Disease (in Japanese). 2024. https://www.kubotaholdings.co.jp/en/ir/docs/260b67658532cd7af67b1c294d8d85c126074683.pdf Stand: 07.02.2025
- 32 Dugel PU, Novack RL, Csaky KG. et al. Phase ii, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration. Retina 2015; 35: 1173-1183
- 33 Rosenfeld PJ, Dugel PU, Holz FG. et al. Emixustat Hydrochloride for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Clinical Trial. Ophthalmology 2018; 125: 1556-1567
- 34 Kubota R, Jhaveri C, Koester JM. et al. Effects of emixustat hydrochloride in patients with proliferative diabetic retinopathy: a randomized, placebo-controlled phase 2 study. Graefes Arch Clin Exp Ophthalmol 2021; 259: 369-378
- 35 Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226: 113856
- 36 Belite Bio. Belite Bio Presents Additional Analysis from Phase 2 Study of Tinlarebant in Stargardt Disease at the ARVO Annual Meeting. 2024. https://investors.belitebio.com/news-releases/news-release-details/belite-bio-presents-additional-analysis-phase-2-study Stand: 07.02.2025
- 37 Lv Z, Guo Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol (Lausanne) 2020; 11: 191
- 38 Farnoodian M, Barone F, Boyle M. et al. Metformin Attenuates the Hallmarks of Stargardt Disease. Invest Ophthalmol Vis Sci 2023; 64: 476
- 39 Bose DA, Farnoodian M, Sharma R. et al. Use of metformin as a potential treatment for Stargardt maculopathy. Invest Ophthalmol Vis Sci 2024; 65: 2203
- 40 Priglinger CS, Gerhardt MJ, Priglinger SG. et al. Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease. Int J Mol Sci 2024; 25
- 41 von Livonius B, Brunsmann F, Holzapfel S. et al. [Comprehensive care for visually impaired and blind people in addition to optical care]. Klin Monbl Augenheilkd 2024;
- 42 Radu RA, Yuan Q, Hu J. et al. Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation. Invest Ophthalmol Vis Sci 2008; 49: 3821-3829