Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000071.xml
Semin Neurol
DOI: 10.1055/a-2559-7520
DOI: 10.1055/a-2559-7520
Review Article
Surgical: Resection/Destructive Procedures

Abstract
Surgical resection and ablation are powerful tools in the treatment of medically refractory epilepsy. In this study, we review a broad array of resective and ablative procedures available to the epilepsy surgeon to address surgical epileptic disease. Here, we aim to provide a brief overview of a very broad category of treatments to provide a better understanding of the breadth of treatments available to providers and patients.
* denotes co-senior authorship
Publication History
Accepted Manuscript online:
17 March 2025
Article published online:
07 April 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342 (05) 314-319
- 2 Engel Jr J, Wiebe S, French J. et al; Quality Standards Subcommittee of the American Academy of Neurology, American Epilepsy Society, American Association of Neurological Surgeons. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the quality standards subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 2003; 60 (04) 538-547
- 3 Wiebe S, Blume WT, Girvin JP, Eliasziw M. Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345 (05) 311-318
- 4 Anderson CT, Noble E, Mani R, Lawler K, Pollard JR. Epilepsy surgery: factors that affect patient decision-making in choosing or deferring a procedure. Epilepsy Res Treat 2013; 2013 (01) 309284
- 5 Swarztrauber K. Barriers to the management of patients with surgically remediable intractable epilepsy. CNS Spectr 2004; 9 (02) 146-152
- 6 Duncan JS. Selecting patients for epilepsy surgery: synthesis of data. Epilepsy Behav 2011; 20 (02) 230-232
- 7 LoPinto-Khoury C, Sperling MR, Skidmore C. et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia 2012; 53 (02) 342-348
- 8 Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: a meta-analysis. Seizure 2016; 41: 43-50
- 9 Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain 2001; 124 (Pt 9): 1683-1700
- 10 Siegel AM. Presurgical evaluation and surgical treatment of medically refractory epilepsy. Neurosurg Rev 2004; 27 (01) 1-18 , discussion 19–21
- 11 Hamer HM, Morris HH, Mascha EJ. et al. Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology 2002; 58 (01) 97-103
- 12 Vadera S, Mullin J, Bulacio J, Najm I, Bingaman W, Gonzalez-Martinez J. Stereoelectroencephalography following subdural grid placement for difficult to localize epilepsy. Neurosurgery 2013; 72 (05) 723-729 , discussion 729
- 13 Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia 2013; 54 (02) 323-330
- 14 Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 2014; 121 (05) 1239-1246
- 15 Almojuela A, Xu Q, O'Carroll A, Ritchie L, Serletis D. Paediatric epilepsy surgery: techniques and outcomes. J Paediatr Child Health 2022; 58 (11) 1952-1957
- 16 Serletis D, Bulacio J, Bingaman W, Najm IM. The Evolutionary Arch of Stereoelectroencephalography in the United States. Neurology Live 2024 https://www.neurologylive.com/view/evolutionary-arch-stereoelectroencephalography-united-states
- 17 Bancaud J, Angelergues R, Bernouilli C. et al. L'exploration fonctionnelle stérétoaxique (S.E.E.G.) des épilepsies. Rev Neurol (Paris) 1969; 120 (06) 448
- 18 La stéréo-électroencéphalographie dans l'épilepsie : informations neurophysiopathologiques apportées par l'investigation fonctionnelle stéreotaxique | WorldCat.org. Accessed December 3, 2024 at: https://search.worldcat.org/title/la-stereo-electroencephalographie-dans-l'epilepsie-:-informations-neurophysiopathologiques-apportees-par-l'investigation-fonctionnelle-stereotaxique/oclc/14485801
- 19 Mullin JP, Shriver M, Alomar S. et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 2016; 57 (03) 386-401
- 20 Wieser HG. Epilepsy surgery: past, present and future. Seizure 1998; 7 (03) 173-184
- 21 Hsieh JK, Pucci FG, Sundar SJ. et al. Beyond seizure freedom: dissecting long-term seizure control after surgical resection for drug-resistant epilepsy. Epilepsia 2023; 64 (01) 103-113
- 22 Nair DR, Laxer KD, Weber PB. et al; RNS System LTT Study. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020; 95 (09) e1244-e1256
- 23 Najm I, Jehi L, Palmini A, Gonzalez-Martinez J, Paglioli E, Bingaman W. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 2013; 54 (05) 772-782
- 24 Widdess-Walsh P, Kellinghaus C, Jeha L. et al. Electro-clinical and imaging characteristics of focal cortical dysplasia: correlation with pathological subtypes. Epilepsy Res 2005; 67 (1–2): 25-33
- 25 Palmini A, Gambardella A, Andermann F. et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 1995; 37 (04) 476-487
- 26 Urbach H, Scheffler B, Heinrichsmeier T. et al. Focal cortical dysplasia of Taylor's balloon cell type: a clinicopathological entity with characteristic neuroimaging and histopathological features, and favorable postsurgical outcome. Epilepsia 2002; 43 (01) 33-40
- 27 Bulacio JC, Jehi L, Wong C. et al. Long-term seizure outcome after resective surgery in patients evaluated with intracranial electrodes. Epilepsia 2012; 53 (10) 1722-1730
- 28 McIntosh AM, Kalnins RM, Mitchell LA, Fabinyi GCA, Briellmann RS, Berkovic SF. Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain 2004; 127 (Pt 9): 2018-2030
- 29 Tassi L, Garbelli R, Colombo N. et al. Type I focal cortical dysplasia: surgical outcome is related to histopathology. Epileptic Disord 2010; 12 (03) 181-191
- 30 Kloss S, Pieper T, Pannek H, Holthausen H, Tuxhorn I. Epilepsy surgery in children with focal cortical dysplasia (FCD): results of long-term seizure outcome. Neuropediatrics 2002; 33 (01) 21-26
- 31 Fauser S, Bast T, Altenmüller DM. et al. Factors influencing surgical outcome in patients with focal cortical dysplasia. J Neurol Neurosurg Psychiatry 2008; 79 (01) 103-105
- 32 Alexandre Jr V, Walz R, Bianchin MM. et al. Seizure outcome after surgery for epilepsy due to focal cortical dysplastic lesions. Seizure 2006; 15 (06) 420-427
- 33 Kral T, von Lehe M, Podlogar M. et al. Focal cortical dysplasia: long term seizure outcome after surgical treatment. J Neurol Neurosurg Psychiatry 2007; 78 (08) 853-856
- 34 Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 2005; 58 (04) 525-532
- 35 Siegel AM, Cascino GD, Meyer FB, Marsh WR, Scheithauer BW, Sharbrough FW. Surgical outcome and predictive factors in adult patients with intractable epilepsy and focal cortical dysplasia. Acta Neurol Scand 2006; 113 (02) 65-71
- 36 Jeha LE, Najm IM, Bingaman WE. et al. Predictors of outcome after temporal lobectomy for the treatment of intractable epilepsy. Neurology 2006; 66 (12) 1938-1940
- 37 Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 2005; 128 (Pt 5): 1188-1198
- 38 Sherman EMS, Wiebe S, Fay-McClymont TB. et al. Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia 2011; 52 (05) 857-869
- 39 Barba C, Rheims S, Minotti L. et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain 2016; 139 (Pt 2): 444-451
- 40 Krucoff MO, Chan AY, Harward SC. et al. Rates and predictors of success and failure in repeat epilepsy surgery: a meta-analysis and systematic review. Epilepsia 2017; 58 (12) 2133-2142
- 41 Wiebe S, Blume WT, Girvin JP, Eliasziw M. Randomized controlled trial of temporal lobe epilepsy surgery: quality-of-life analyses. Epilepsia 2001
- 42 Snyder KM, Forseth KJ, Donos C. et al. Critical role of the ventral temporal lobe in naming. Epilepsia 2023; 64 (05) 1200-1213
- 43 Binder JR, Tong JQ, Pillay SB. et al; fMRI in Anterior Temporal Epilepsy Surgery (FATES) study. Temporal lobe regions essential for preserved picture naming after left temporal epilepsy surgery. Epilepsia 2020; 61 (09) 1939-1948
- 44 Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989; 71 (03) 316-326
- 45 Ojemann GA, Dodrill CB. Verbal memory deficits after left temporal lobectomy for epilepsy. mechanism and intraoperative prediction. J Neurosurg 1985; 62 (01) 101-107
- 46 Haglund MM, Berger MS, Shamseldin M, Lettich E, Ojemann GA. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 1994; 34 (04) 567-576 , discussion 576
- 47 Ramey WL, Martirosyan NL, Lieu CM, Hasham HA, Lemole Jr GM, Weinand ME. Current management and surgical outcomes of medically intractable epilepsy. Clin Neurol Neurosurg 2013; 115 (12) 2411-2418
- 48 Wyler AR, Hermann BP, Somes G. Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 1995; 37 (05) 982-990 , discussion 990–991
- 49 Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Lüders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 2007; 130 (Pt 2): 574-584
- 50 Mosewich RK, So EL, O'Brien TJ. et al. Factors predictive of the outcome of frontal lobe epilepsy surgery. Epilepsia 2000; 41 (07) 843-849
- 51 Tigaran S, Cascino GD, McClelland RL, So EL, Richard Marsh W. Acute postoperative seizures after frontal lobe cortical resection for intractable partial epilepsy. Epilepsia 2003; 44 (06) 831-835
- 52 Cascino GD. Surgical treatment for extratemporal epilepsy. Curr Treat Options Neurol 2004; 6 (03) 257-262
- 53 Olivier A, Boling WW, Tanriverdi T. Techniques in epilepsy surgery: the MNI approach. Tech Epilepsy Surg 2012; (February):
- 54 Rostomily RC, Berger MS, Ojemann GA, Lettich E. Postoperative deficits and functional recovery following removal of tumors involving the dominant hemisphere supplementary motor area. J Neurosurg 1991; 75 (01) 62-68
- 55 Rasmussen T. Surgery for epilepsy arising in regions other than the temporal and frontal lobes. Adv Neurol 1975; 8: 207-226
- 56 Jehi LE, O'Dwyer R, Najm I, Alexopoulos A, Bingaman W. A longitudinal study of surgical outcome and its determinants following posterior cortex epilepsy surgery. Epilepsia 2009; 50 (09) 2040-2052
- 57 Lüders H, Comair Y. Epilepsy Surgery; 2001. Accessed December 3, 2024 at: https://books.google.com/books?hl=en&lr=&id=2x5irzpcsjwc&oi=fnd&pg=pr19&ots=5lfmkto7pb&sig=nrvkld-ctbaijpz-1rtbqwarbnq
- 58 Konstantopoulos K, Giakoumettis D. Neuroimaging in neurogenic communication disorders. Neuroimaging Neurogenic Commun Disord 2023; (January): 1-71
- 59 Simpson JA, Fitch W. Integrative Functions of the Cerebral Cortex. In: Applied Neurophysiology. Butterworth & Co.; 1988: 109-116
- 60 Bugain M, Dimech Y, Torzhenskaya N. et al. Occipital intralobar fasciculi: a description, through tractography, of three forgotten tracts. Commun Biol 2021; 4 (01) 433
- 61 Sarkis RA, Jehi L, Najm IM, Kotagal P, Bingaman WE. Seizure outcomes following multilobar epilepsy surgery. Epilepsia 2012; 53 (01) 44-50
- 62 Kishima H, Oshino S, Tani N. et al. Which is the most appropriate disconnection surgery for refractory epilepsy in childhood?. Neurol Med Chir (Tokyo) 2013; 53 (11) 814-820
- 63 Leiphart JW, Peacock WJ, Mathern GW. Lobar and multilobar resections for medically intractable pediatric epilepsy. Pediatr Neurosurg 2001; 34 (06) 311-318
- 64 Busch RM, Hogue O, Miller M. et al. Nomograms to predict verbal memory decline after temporal lobe resection in adults with epilepsy. Neurology 2021; 97 (03) e263-e274
- 65 Busch RM, Hogue O, Kattan MW. et al. Nomograms to predict naming decline after temporal lobe surgery in adults with epilepsy. Neurology 2018; 91 (23) e2144-e2152
- 66 Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. Handb Clin Neurol 2019; 161: 45-71
- 67 Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL, Hervey-Jumper SL. Clinical pearls and methods for intraoperative awake language mapping. Neurosurgery 2021; 89 (02) 143-153
- 68 Guo J, Wang Z, van 't Klooster MA. et al. Seizure outcome after intraoperative electrocorticography-tailored epilepsy surgery: a systematic review and meta-analysis. Neurology 2024; 102 (11) e209430
- 69 Hoppe C, Witt JA, Helmstaedter C, Gasser T, Vatter H, Elger CE. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure 2017; 48: 45-52
- 70 Gewiese B, Beuthan J, Fobbe F. et al. Magnetic resonance imaging-controlled laser-induced interstitial thermotherapy. Invest Radiol 1994; 29 (03) 345-351
- 71 Missios S, Bekelis K, Barnett GH. Renaissance of laser interstitial thermal ablation. Neurosurg Focus 2015; 38 (03) E13
- 72 Jethwa PR, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 2012; 71 (Suppl. 01) 133-145
- 73 Dickinson RJ, Hall AS, Hind AJ, Young IR. Measurement of changes in tissue temperature using MR imaging. J Comput Assist Tomogr 1986; 10 (03) 468-472
- 74 Donos C, Rollo P, Tombridge K, Johnson JA, Tandon N, Tandon N. Visual field deficits following laser ablation of the hippocampus. Neurology 2020; 94 (12) e1303-e1313
- 75 Shamim D, Cheng J, Pearson C, Landazuri P. Network radiofrequency ablation for drug resistant epilepsy. Epilepsy Behav Rep 2021; 16: 100471
- 76 Catenoix H, Bourdillon P, Guénot M, Isnard J. The combination of stereo-EEG and radiofrequency ablation. Epilepsy Res 2018; 142: 117-120
- 77 Cossu M, Fuschillo D, Casaceli G. et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg 2015; 123 (06) 1358-1367
- 78 Serletis D, Bulacio J, Bingaman J. et al. Radiofrequency ablation during stereoelectroencephalography: from diagnostic tool to therapeutic intervention. Illustrative case. J Neurosurg Case Lessons 2023; 6 (07) CASE23321
- 79 Staudt MD, Maturu S, Miller JP. Radiofrequency energy and electrode proximity influences stereoelectroencephalography-guided radiofrequency thermocoagulation lesion size: an in vitro study with clinical correlation. Oper Neurosurg (Hagerstown) 2018; 15 (04) 461-469
- 80 Bourdillon P, Isnard J, Catenoix H. et al. Stereo-electro-encephalography-guided radiofrequency thermocoagulation: from in vitro and in vivo data to technical guidelines. World Neurosurg 2016; 94: 73-79
- 81 Guénot M, Isnard J, Catenoix H, Mauguière F, Sindou M. SEEG-guided RF-thermocoagulation of epileptic foci: a therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg 2011; 36: 61-78
- 82 Youngerman BE, Banu MA, Khan F. et al. Long-term outcomes of mesial temporal laser interstitial thermal therapy for drug-resistant epilepsy and subsequent surgery for seizure recurrence: a multi-centre cohort study. J Neurol Neurosurg Psychiatry 2023; 94 (11) 879-886
- 83 Malikova H, Kramska L, Liscak R. et al. Stereotactic radiofrequency amygdalohippocampectomy for the treatment of temporal lobe epilepsy: do good neuropsychological and seizure outcomes correlate with hippocampal volume reduction?. Epilepsy Res 2012; 102 (1-2): 34-44
- 84 Liu DD, Lauro PM, Phillips III RK. et al. Two-trajectory laser amygdalohippocampotomy: anatomic modeling and initial seizure outcomes. Epilepsia 2021; 62 (10) 2344-2356
- 85 Jamiolkowski RM, Nguyen QA, Farrell JS. et al. The fasciola cinereum of the hippocampal tail as an interventional target in epilepsy. Nat Med 2024; 30 (05) 1292-1299
- 86 Curry DJ, Raskin J, Ali I, Wilfong AA. MR-guided laser ablation for the treatment of hypothalamic hamartomas. Epilepsy Res 2018; 142: 131-134
- 87 Rosenfeld JV, Feiz-Erfan I. Hypothalamic hamartoma treatment: surgical resection with the transcallosal approach. Semin Pediatr Neurol 2007; 14 (02) 88-98
- 88 Abla AA, Wait SD, Forbes JA. et al. Syndrome of alternating hypernatremia and hyponatremia after hypothalamic hamartoma surgery. Neurosurg Focus 2011; 30 (02) E6
- 89 Rosenfeld JV, Freeman JL, Harvey AS. Operative technique: the anterior transcallosal transseptal interforniceal approach to the third ventricle and resection of hypothalamic hamartomas. J Clin Neurosci 2004; 11 (07) 738-744
- 90 Xu DS, Chen T, Hlubek RJ. et al. Magnetic resonance imaging-guided laser interstitial thermal therapy for the treatment of hypothalamic hamartomas: a retrospective review. Neurosurgery 2018; 83 (06) 1183-1192
- 91 Kameyama S, Shirozu H, Masuda H, Ito Y, Sonoda M, Akazawa K. MRI-guided stereotactic radiofrequency thermocoagulation for 100 hypothalamic hamartomas. J Neurosurg 2016; 124 (05) 1503-1512
- 92 Kerezoudis P, Tsayem IN, Lundstrom BN, Van Gompel JJ. Systematic review and patient-level meta-analysis of radiofrequency ablation for medically refractory epilepsy: implications for clinical practice and research. Seizure 2022; 102: 113-119
- 93 Ho AL, Miller KJ, Cartmell S, Inoyama K, Fisher RS, Halpern CH. Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep 2016; 5: 23-26
- 94 Ogasawara C, Watanabe G, Young K. et al. Laser interstitial thermal therapy for cerebral cavernous malformations: a systematic review of indications, safety, and outcomes. World Neurosurg 2022; 166: 279-287.e1
- 95 Labate A, Bertino S, Morabito R. et al. MR-guided focused ultrasound for refractory epilepsy: where are we now?. J Clin Med 2023; 12 (22) 7070
- 96 Monteith S, Snell J, Eames M, Kassell NF, Kelly E, Gwinn R. Transcranial magnetic resonance-guided focused ultrasound for temporal lobe epilepsy: a laboratory feasibility study. J Neurosurg 2016; 125 (06) 1557-1564
- 97 Parker WE, Weidman EK, Chazen JL. et al. Magnetic resonance-guided focused ultrasound for ablation of mesial temporal epilepsy circuits: modeling and theoretical feasibility of a novel noninvasive approach. J Neurosurg 2019; 133 (01) 63-70
- 98 Castinetti F, Brue T, Morange I, Carron R, Régis J. Gamma knife radiosurgery for hypothalamic hamartoma preserves endocrine functions. Epilepsia 2017; 58 (Suppl. 02) 72-76
- 99 Régis J, Scavarda D, Tamura M. et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Semin Pediatr Neurol 2007; 14 (02) 73-79
- 100 Kawamura T, Onishi H, Kohda Y, Hirose G. Serious adverse effects of gamma knife radiosurgery for mesial temporal lobe epilepsy. Neurol Med Chir (Tokyo) 2012; 52 (12) 892-898