Subscribe to RSS
DOI: 10.1055/a-2708-9064
Examining the Current Landscape of Liver Assessment by means of Viscosity and Shear Wave Elastography: A State-of-the-Art Review
Fortschritte in der sonographischen Beurteilung der Lebersteifigkeit mittels Viskositäts-basierter Elastographie: Eine State-of-the-Art-ÜbersichtAuthors
Abstract
Ultrasound plays a central role in the diagnosis, monitoring, and management of liver diseases. Assessing hepatic fibrosis is essential in chronic liver disease, and several diagnostic modalities are available. The gold standard remains percutaneous liver biopsy, an invasive method using a 16–18-gauge needle. A breakthrough came in 2003 with transient elastography (TE), a non-invasive technique that measures liver stiffness (kPa) via elastic wave propagation. Later, shear wave elastography (SWE), integrated into modern ultrasound systems, was developed to assess tissue elasticity. SWE generates shear waves (SWs) through acoustic radiation force, assuming tissues to be linearly elastic and homogeneous, and provides quantitative stiffness data. Recent evidence shows hepatic tissue is viscoelastic, with wave propagation varying by frequency. Quantifying viscosity remains a challenge. Fibrosis affects viscoelastic properties and shear wave speed (SWS), while necroinflammation predominantly alters the viscous component, influencing the shear wave dispersion slope (SWDS). This review provides an overview of ultrasound elastography methods, including stiffness and viscosity assessment, their physical principles, and clinical applications in hepatology.
Zusammenfassung
Ultraschall ist zentral für die Diagnose, Verlaufskontrolle und Therapie von Leber-Erkrankungen. Die Einschätzung des Fibrosegrads ist entscheidend im Management chronischer Leber-Erkrankungen. Goldstandard bleibt die invasive Leberbiopsie mit einer 16–18-Gauge-Nadel. Seit 2003 bietet die transiente Elastografie (TE) eine nicht invasive Alternative, die die Lebersteifigkeit in kPa durch Messung elastischer Wellen bestimmt. Später wurde die Scherwellen-Elastografie (SWE) entwickelt, heute in moderne Ultraschallgeräte integriert. SWE erzeugt laterale Scherwellen (SWs) mittels akustischem Strahlungskraft-Impuls und basiert auf der Annahme, dass Gewebe homogen und linear elastisch ist. Dies ermöglicht eine quantitative Bestimmung der Gewebesteifigkeit. Neuere Studien zeigen jedoch, dass das Lebergewebe viskoelastisch ist – Wellen unterschiedlicher Frequenz breiten sich mit variabler Phasengeschwindigkeit aus. Die exakte Messung der Viskosität bleibt methodisch anspruchsvoll. Eine Fibrose verändert die viskoelastischen Eigenschaften und die Scherwellen-Geschwindigkeit (SWS), während nekroinflammatorische Prozesse vor allem die viskose Komponente beeinflussen und damit den Scherwellen-Dispersionsslope (SWDS). Diese Übersicht beleuchtet die Methoden der Elastografie zur Beurteilung der Steifigkeit und Viskosität, deren physikalische Grundlagen sowie klinische Anwendungen in der Hepatologie.
Publication History
Received: 08 May 2025
Accepted after revision: 24 September 2025
Accepted Manuscript online:
24 September 2025
Article published online:
16 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Gebo KA, Herlong HF, Torbenson MS. et al. Role of liver biopsy in management of chronic hepatitis C: a systematic review. Hepatology; 2002; 36: S161-S172
- 2 Seeff LB, Everson GT, Morgan TR. et al. Complication rate of percutaneous liver biopsies among persons with advanced chronic liver disease in the HALT-C trial. Clin Gastroenterol Hepatol; 2010; 8: 877-883
- 3 Regev A, Berho M, Jeffers LJ. et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 2002; 97: 2614-2618
- 4 Parker KJ, Doyley MM, Rubens DJ. et al. Imaging the elastic properties of tissue: the 20-year perspective. Phys Med Biol; 2011; 56
- 5 Ozturk A, Grajo JR, Dhyani M. et al. Principles of ultrasound elastography. Abdom Radiol (NY); 2018; 43: 773-785
- 6 Cosgrove D, Piscaglia F, Bamber J. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in Med; 2013; 34: 238-253
- 7 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall in Med; 2017; 38: e16-e47
- 8 Ziol M, Handra-Luca A, Kettaneh A. et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology; 2005; 41: 48-54
- 9 Castéra L, Vergniol J, Foucher J. et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology; 2005; 128: 343-350
- 10 Chon YE, Choi EH, Song KJ. et al. Performance of transient elastography for the staging of liver fibrosis in patients with chronic hepatitis B: a meta-analysis. PLoS One 2012; 7
- 11 Afdhal NH, Bacon BR, Patel K. et al. Accuracy of Fibroscan, compared with histology, in analysis of liver fibrosis in patients with hepatitis B or C: a United States multicenter study. Clin Gastroenterol Hepatol 2015; 13: 772-779.e3
- 12 Palmeri ML, Wang MH, Dahl JJ. et al. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol; 2008; 34: 546-558
- 13 Bavu É, Gennisson JL, Couade M. et al. Non-invasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol; 2011; 37: 1361-1373
- 14 Boursier J, Isselin G, Fouchard-Hubert I. et al. Acoustic radiation force impulse: a new ultrasonographic technology for the widespread noninvasive diagnosis of liver fibrosis. Eur J Gastroenterol Hepatol; 2010; 22: 1074-1084
- 15 Cassinotto C, Lapuyade B, Mouries A. et al. Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and Fibroscan. J Hepatol; 2014; 61: 550-557
- 16 Muller M, Gennisson JL, Deffieux T. et al. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study. Ultrasound Med Biol; 2009; 35: 219-229
- 17 Deffieux T, Gennisson JL, Bousquet L. et al. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J Hepatol; 2015; 62: 317-324
- 18 Rus G, Faris IH, Torres J. et al. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis?. Sensors (Basel) 20
- 19 Barry CT, Hah Z, Partin A. et al. Mouse liver dispersion for the diagnosis of early-stage Fatty liver disease: a 70-sample study. Ultrasound Med Biol; 2014; 40: 704-713
- 20 Chen S, Urban MW, Pislaru C. et al. Liver elasticity and viscosity quantification using shear wave dispersion ultrasound vibrometry (SDUV). Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009: 2252-2255
- 21 Sugimoto K, Moriyasu F, Oshiro H. et al. Viscoelasticity Measurement in Rat Livers Using Shear-Wave US Elastography. Ultrasound Med Biol; 2018; 44: 2018-2024
- 22 Peralta L, Rus G, Bochud N. et al. Mechanical assessment of cervical remodelling in pregnancy: insight from a synthetic model. J Biomech; 2015; 48: 1557-1565
- 23 Ambekar R, Lau T-Y, Walsh M. et al. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express; 2012; 3: 2021
- 24 Aycock RS, Seyer JM. Collagens of normal and cirrhotic human liver. Connect Tissue Res; 1989; 23: 19-31
- 25 Ferruzzi J, Collins MJ, Yeh AT. et al. Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan syndrome. Cardiovasc Res; 2011; 92: 287-295
- 26 Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol; 2010; 341: 126-140
- 27 Losa GA, Alini M. Sulfated proteoglycans in the extracellular matrix of human breast tissues with infiltrating carcinoma. Int J Cancer; 1993; 54: 552-557
- 28 Muir H. Proteoglycans as organizers of the intercellular matrix. Biochem Soc Trans; 1983; 11: 613-622
- 29 Schaefer L, Tredup C, Gubbiotti MA. et al. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J; 2017; 284: 10-26
- 30 Yamaoka K, Nouchi T, Marumo F. et al. Alpha-smooth-muscle actin expression in normal and fibrotic human livers. Dig Dis Sci; 1993; 38: 1473-1479
- 31 Kumar V, Denis M, Gregory A. et al. Viscoelastic parameters as discriminators of breast masses: Initial human study results. PLoS One; 2018; 13: e0205717
- 32 Nabavizadeh A, Bayat M, Kumar V. et al. Viscoelastic biomarker for differentiation of benign and malignant breast lesion in ultra-low frequency range. Sci Rep; 2019; 9
- 33 Balleyguier C, Canale S, Hassen WB. et al. Breast elasticity: principles, technique, results: an update and overview of commercially available software. Eur J Radiol 2013; 82: 427-434
- 34 Bhatt M, Moussu MAC, Chayer B. et al. Reconstruction of Viscosity Maps in Ultrasound Shear Wave Elastography. IEEE Trans Ultrason Ferroelectr Freq Control; 2019; 66: 1068-1078
- 35 Barr RG, Ferraioli G, Palmeri ML. et al. Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology; 2015; 276: 845-861
- 36 Yun MH, Seo YS, Kang HS. et al. The effect of the respiratory cycle on liver stiffness values as measured by transient elastography. J Viral Hepat; 2011; 18: 631-636
- 37 Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 2012; 28 (01) 13-20
- 38 Procopet B, Berzigotti A, Abraldes JG. et al. Real-time shear-wave Elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol 2015; 62 (05) 1068-75
- 39 Furuichi Y, Sugimoto K, Oshiro H. et al. Elucidation of spleen elasticity and viscosity in a carbon tetrachloride rat model of liver cirrhosis using a new ultrasound elastography. J Med Ultrason (2001); 2021; 48: 431-437
- 40 Popa A, Sporea I, Bende F. et al. The Non-Invasive Ultrasound-Based Assessment of Liver Viscosity in a Healthy Cohort. Diagnostics (Basel); 2022; 12
- 41 Cetiner M, Schiepek F, Finkelberg I. et al. Validation of attenuation imaging coefficient, shear wave elastography, and dispersion as emerging tools for non-invasive evaluation of liver tissue in children. Front Pediatr; 2023; 11
- 42 Ferraioli G, Maiocchi L, Dellafiore C. et al. Performance and cutoffs for liver fibrosis staging of a two-dimensional shear wave elastography technique. Eur J Gastroenterol Hepatol; 2021; 33: 89-95
- 43 Xiao-Qing Z, Rong-Qin Z, Jie-Yang J. et al. US Shear-Wave Elastography Dispersion for Characterization of Chronic Liver Disease. Radiology; 2022; 305: 597-605
- 44 Wang K, Yu D, Li G. et al. Comparison of the diagnostic performance of shear wave elastography with shear wave dispersion for pre-operative staging of hepatic fibrosis in patients with hepatocellular carcinoma. Eur J Radiol; 2022; 154
- 45 Sugimoto K, Lee DH, Lee JY. et al. Multiparametric US for Identifying Patients with High-Risk NASH: A Derivation and Validation Study. Radiology; 2021; 301 (03) 625-34
- 46 Jang JK, Lee ES, Seo JW. et al. Two-dimensional Shear-Wave Elastography and US Attenuation Imaging for Non-alcoholic Steatohepatitis Diagnosis: A Cross-sectional, Multicenter Study. Radiology; 2022; 305: 118-126
- 47 Sugimoto K, Moriyasu F, Burgio MD. et al. US Markers and Necroinflammation, Steatosis, and Fibrosis in Metabolic Dysfunction-associated Steatotic Liver Disease: The iLEAD Study. Radiology; 2024; 312
- 48 Jung EM, Wiesinger I, Kaiser U. et al. Initial experiences with dynamic, quality indicator-based multimodal tissue analysis (M-Ref) with parallel assessment of viscosity and shear wave elastography in liver parenchyma alterations. Clin Hemorheol Microcirc 2025; 88: 419-427
- 49 Nenadic IZ, Qiang B, Urban MW. et al. Attenuation measuring ultrasound shear wave elastography and in vivo application in post-transplant liver patients. Phys Med Biol; 2017; 62: 484-500
- 50 Lee DH, Lee JY, Bae JS. et al. Shear-Wave Dispersion Slope from US Shear-Wave Elastography: Detection of Allograft Damage after Liver Transplantation. Radiology; 2019; 293: 327-333
- 51 Dietrich CF, Nolsøe CP, Barr RG. et al. Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver – Update 2020 – WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultraschall in Med 2020; 41: 562-585
- 52 Haimerl M, Poelsterl S, Beyer LP. et al. Chronic liver disease: Quantitative MRI vs CEUS-based microperfusion. Clin Hemorheol Microcirc 2016; 64: 435-446
- 53 Zerunian M, Masci B, Caruso D. et al. Liver Magnetic Resonance Elastography: Focus on Methodology, Technique, and Feasibility. Diagnostics 2024; 14: 379

