Subscribe to RSS

DOI: 10.1055/a-2779-2213
Tuning Proton-Electron Synergy for Electrooxidative Alkyne Annulation: Mechanistic Insights and Synthetic Application
Authors
Supported by: European Research Council ERC Advanced Grant No 101021358
Generous support by the DFG (Gottfried-Wilhelm-Leibniz award and SPP 2363 to L.A.), the ERC Advanced Grant Agreement (no. 101021358 to L.A.), FCI Kekulé Fellowship (no. 114311 for S.E.P.), and the CSC scholarship (Y.X.) is gratefully acknowledged.
Supported by: Deutsche Forschungsgemeinschaft Gottfried-Wilhelm-Leibniz award, SPP 2363 Supported by: FCI Kekulé Fellowship 114311 Supported by: China Scholarship Council

Abstract
Electrooxidative catalysis surfaced as a resource-economic and increasingly viable platform toward sustainable organic synthesis. It challenges the paradigm of using stoichiometric chemical reagents with the aid of electricity to enable traceless electron and proton transfers. Thereby, molecular synthesis can be inherently connected to the hydrogen evolution reaction, while avoiding waste formation in the form of stoichiometric by-products. Alkynes represent a widely occurring structural motif of outstanding relevance in molecular synthesis. The direct exploitation of alkynes toward the activation of otherwise inert C─H bonds sets the stage for innovative dehydrogenative annulations, allowing for the rapid construction of structurally complex compounds. Specifically, the merger with earth-abundant metal catalysis constitutes a promising advancement in the light of green chemistry, bearing unique potential to redefine chemical processing.
Keywords
Electrocatalysis - C─H activation - Alkyne annulation - Continuous flow - Hydrogen evolution - EnantioselectivityPublication History
Received: 27 November 2025
Accepted after revision: 23 December 2025
Article published online:
22 January 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Little RD. J Org Chem 2020; 85: 13375
- 2 Jutand A. Chem Rev 2008; 108: 2300
- 3 Moeller KD. Chem Rev 2018; 118: 4817
- 4 Jiao K-J, Xing Y-K, Yang Q-L, Qiu H, Mei T-S. Acc Chem Res 2020; 53: 300
- 5 Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. ACS Cent Sci 2021; 7: 415
- 6 Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
- 7 Kingston C, Palkowitz MD, Takahira Y. et al. Acc Chem Res 2020; 53: 72
- 8 Ackermann L. Isr J Chem 2024; 64: e202400022
- 9 Malapit CA, Prater MB, Cabrera-Pardo JR. et al. Chem Rev 2022; 122: 3180
- 10 Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew Chem Int Ed 2018; 57: 5594
- 11 Sperry JB, Wright DL. Chem Soc Rev 2006; 35: 605
- 12 Chen G, Li X, Feng X. Angew Chem Int Ed 2022; 61: e202209014
- 13 Yuan Y, Lei A. Acc Chem Res 2019; 52: 3309
- 14 Turner JA. Science 2004; 305: 972
- 15 Ackermann L. Acc Chem Res 2020; 53: 84
- 16 Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal 2018; 8: 7086
- 17 Kakiuchi F, Kochi T. Isr J Chem 2017; 57: 953
- 18 Ackermann L, Vicente R, Kapdi AR. Angew Chem Int Ed 2009; 48: 9792
- 19 Rogge T, Kaplaneris N, Chatani N. et al. Nat Rev Methods Primer 2021; 1: 43
- 20 Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. Chem Soc Rev 2022; 51: 3123
- 21 Bergman R. Nature 2007; 446: 391
- 22 Kakiuchi F, Chatani N. Adv Synth Catal 2003; 345: 1077
- 23 Benjare SK, Mahulkar PS, Nanda T, Pati BV, Najiar LO, Ravikumar PC. Chem Commun 2022; 58: 10262
- 24 Kushwaha P, Saxena A, von Münchow T, Dana S, Saha B, Ackermann L. Chem Commun 2024; 60: 12333
- 25 Yamamoto Y. Chem Soc Rev 2014; 43: 1575
- 26 Dawood KM, Alaasar M, Asian J. Org Chem 2022; 11: e202200331
- 27 Dalton T, Faber T, Glorius F. ACS Cent Sci 2021; 7: 245
- 28 Warratz S, Kornhaaß C, Cajaraville A, Niepötter B, Stalke D, Ackermann L. Angew Chem Int Ed 2015; 54: 5513
- 29 Mei R, Wang H, Warratz S, Macgregor SA, Ackermann L. Chem Eur J 2016; 22: 6759
- 30 Dhawa U, Kaplaneris N, Ackermann L. Org Chem Front 2021; 8: 4886
- 31 Gandeepan P, Finger LH, Meyer TH, Ackermann L. Chem Soc Rev 2020; 49: 4254
- 32 Ackermann L. Acc Chem Res 2014; 47: 281
- 33 Ackermann L. Chem Rev 2011; 111: 1315
- 34 Qiu Y, Tian C, Massignan L, Rogge T, Ackermann L. Angew Chem Int Ed 2018; 57: 5818
- 35 Mei R, Koeller J, Ackermann L. Chem Commun 2018; 54: 12879
- 36 Xu F, Li Y-J, Huang C, Xu H-C. ACS Catal 2018; 8: 3820
- 37 De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv Synth Catal 2014; 356: 1461
- 38 Yang L, Steinbock R, Scheremetjew A. et al. Angew Chem Int Ed 2020; 59: 11130
- 39 Tan X, Hou X, Rogge T, Ackermann L. Angew Chem Int Ed 2021; 60: 4619
- 40a Luo M-J, Zhang T-T, Cai F-J, Li J-H, He D-L. Chem Commun 2019; 55: 7251
- 40b Wang Z-Q, Hou C, Zhong Y-F. et al. Org Lett 2019; 21: 9841
- 40c Luo M-J, Hu M, Song R-J, He D-L, Li J-H. Chem Commun 2019; 55: 1124
- 40d Yang Q-L, Luo Y-R, Xu R-Y, Zhang B-N, Zhang Y-N, Guo H-M. Org Lett 2023; 25: 6796
- 41 Kong W-J, Finger LH, Oliveira JCA, Ackermann L. Angew Chem Int Ed 2019; 58: 6342
- 42 Wang Y, Zhao R, Ackermann L. Adv Mater 2023; 35: 2300760
- 43 Kong W-J, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. J Am Chem Soc 2019; 141: 17198
- 44 Elsherbini M, Wirth T. Acc Chem Res 2019; 52: 3287
- 45 Pletcher D, Green RA, Brown RCD. Chem Rev 2018; 118: 4573
- 46 Maljuric S, Jud W, Kappe CO, Cantillo DJ. Flow Chem 2020; 10: 181
- 47 Wu Z-J, Su F, Lin W. et al. Angew Chem Int Ed 2019; 131: 16926
- 48 Yuan Y, Zhu J, Yang Z, Ni S-F, Huang Q, Ackermann L. CCS Chem 2022; 4: 1858
- 49 Kong W-J, Shen Z, Finger LH, Ackermann L. Angew Chem Int Ed 2020; 59: 5551
- 50 Wang Y, Oliveira JCA, Lin Z, Ackermann L. Angew Chem Int Ed 2021; 60: 6419
- 51 Colobert F, Wencel-Delord J. C─H Activation in Asymmetric Synthesis. Weinheim: Wiley-VCH; 2019
- 52 Newton CG, Wang S-G, Oliveira CC, Cramer N. Chem Rev 2017; 117: 8908
- 53 Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew Chem Int Ed 2019; 58: 12803
- 54 Woźniak L, Cramer N. Trends Chem 2019; 1: 471-484
- 55 Wei W, Scheremetjew A, Ackermann L. Chem Sci 2022; 13: 2783
- 56 Huang Y-Q, Wu Z-J, Zhu L. et al. CCS Chem 2022; 4: 3181
- 57a Xing Y-K, Chen X-R. et al. Nat Commun 2021; 12: 930
- 57b Stangier M, Messinis AM, Oliveira JCA, Yu H, Ackermann L. Nat Commun 2021; 12: 4736
- 57c Wang Z-C, Li R-T, Ma Q. et al. Green Chem 2021; 23: 9515
- 57d Sen PP, Prakash R, Roy SR. Org Lett 2022; 24: 4530
- 57e Xu C, Zhang Z, Liu T, Zhang W, Zhong W, Ling F. Chem Commun 2022; 58: 9508
- 57f Homölle SL, Stangier M, Reyes E, Ackermann L. Precis Chem 2023; 1: 382
- 57g Zhou G, Zhou T, Jiang A-L. et al. Angew Chem Int Ed 2024; 136: e202319871
- 57h Wu S, Yuan B, Lei Y. et al. Org Chem Front 2025; 12: 5566
- 58 Suvarna M, Pérez-Ramírez J. Nat Catal 2024; 7: 624
- 59 Zhang S-Q, Xu L-C, Li S-W. et al. Chem Eur J 2023; 29: e202202834
- 60 Oliveira JCA, Frey J, Zhang S-Q. et al. Trends Chem 2022; 4: 863
- 61 Żurański AM, Martinez Alvarado JI, Shields BJ, Doyle A. Acc Chem Res 2021; 54: 1856
- 62 Coley CW, Green WH, Jensen KF. Acc Chem Res 2018; 51: 1281
- 63 Reid JP, Sigman MS. Nat Rev Chem 2018; 2: 290
- 64 Hou X, Li S, Frey J, Hong X, Ackermann L. Chem 2024; 10: 2283
- 65 Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Angew Chem Int Ed 2020; 59: 13451
- 66 Sokolov VI, Troitskaya LL, Reutov OA. J Organomet Chem 1979; 182: 537
- 67 Zhang J, Xu Q, Fan J. et al. Org Chem Front 2021; 8: 3404
- 68 Choi I, Messinis AM, Hou X, Ackermann L. Angew Chem Int Ed 2021; 60: 27005
- 69 Holzwarth MS, Plietker B. ChemCatChem 2013; 5: 1650
- 70 Moselage M, Ackermann L. ACS Catal 2016; 6: 498
- 71 Sauermann N, Meyer TH, Tian C, Ackermann L. J Am Chem Soc 2017; 139: 18452
- 72 Tian C, Massignan L, Meyer TH, Ackermann L. Angew Chem Int Ed 2018; 57: 2383
- 73 Meyer TH, Chesnokov GA, Ackermann L. ChemSusChem 2020; 13: 668
- 74 Little RD, Moeller KD. Chem Rev 2018; 118: 4483
- 75 Nguyen BH, Perkins RJ, Smith JA, Moeller KD. Beilstein J Org Chem 2015; 11: 280
- 76 Nguyen BH, Redden A, Moeller KD. Green Chem 2014; 16: 69
- 77 Anderson LA, Redden A, Moeller KD. Green Chem 2011; 13: 1652
- 78 Tian C, Meyer TH, Stangier M. et al. Nat Protoc 2020; 15: 1760
- 79 Mei R, Sauermann N, Oliveira JCA, Ackermann L. J Am Chem Soc 2018; 140: 7913
- 80 Mei R, Ma W, Zhang Y, Guo X, Ackermann L. Org Lett 2019; 21: 6534
- 81 Cao Y, Yuan Y, Lin Y. et al. Green Chem 2020; 22: 1548
- 82 Tang S, Wang D, Liu Y, Zeng L, Lei A. Nat Commun 2018; 9: 798
- 83 Tian C, Dhawa U, Scheremetjew A, Ackermann L. ACS Catal 2019; 9: 7690
- 84 Yang Q-L, Wang X-Y, Lu J-Y, Zhang L-P, Fang P, Mei T-S. J Am Chem Soc 2018; 140: 11487
- 85 Ma J-Y, Yao Q-J, Jiang L-C, Huang F-R, Yue Q, Shi B-F. J Am Chem Soc 2025; 147: 7061
- 86 Yoon TP, Jacobsen EN. Science 2003; 299: 1691
- 87 Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew Chem Int Ed 2017; 56: 10378
- 88 Pesciaioli F, Dhawa U, Oliveira JCA, Yin R, John M, Ackermann L. Angew Chem Int Ed 2018; 57: 15425
- 89 Ozols K, Jang Y-S, Cramer N. J Am Chem Soc 2019; 141: 5675
- 90 Kurihara T, Kojima M, Yoshino T, Matsunaga S, Asien J. Org Chem 2020; 9: 368
- 91 Yao Q-J, Shi B-F. Acc Chem Res 2025; 58: 971
- 92 von Münchow T, Dana S, Yang X, Binbin Y, Ackermann L. Science 2023; 379: 1036
- 93 Bolm C, Weickhardt K, Zehnder M, Ranff T. Chem Ber 1991; 124: 1173
- 94 Qian P-F, Zhou G, Hu J-H. et al. Angew Chem Int Ed 2024; 63: e202412459
- 95 Qian P-F, Wu Y-X, Hu J-H. et al. J Am Chem Soc 2025; 147: 10791
- 96 Zhang Y, Liu S-L, Li T. et al. ACS Catal 2024; 14: 1
- 97 Li T, Shi L, Wang X. et al. Nat Commun 2023; 14: 5271
- 98 Si X-J, Zhao X, Wang J. et al. Chem Sci 2023; 14: 7291
- 99 Boos P, Pandit NK, Dana S. et al. Chem Eur 2025; 3: e202500071
- 100 Dana S, Pandit NK, Boos P. et al. ACS Catal 2025; 151: 4450
- 101 von Münchow T, Liu Y-R, Parmar R, Peters SE, Trienes S, Ackermann L. Angew Chem Int Ed 2024; 63: e202405423
- 102 Ince MC, Benyahia B, Vilé G. ACS Sustain Chem Eng 2025; 13: 2864
- 103 Salley D, Manzano JS, Kitson PJ, Cronin L. ACS Cent Sci 2023; 9: 1525
- 104 Coley CW, Thomas III DA, Lummiss JAM. et al. Science 2019; 365
- 105 Hourtoule M, Trienes S, Ackermann L. Macromol Rapid Commun 2025; 46: 2500143
- 106a Zhang S-K, Struwe J, Hu L, Ackermann L. Angew Chem Int Ed 2020; 59: 3178
- 106b Zhang S-K, Samanta RC, Del Vecchio A, Ackermann L. Chem Eur J 2020; 26: 10936
- 106c Zhang S-K, Del Vecchio A, Kuniyil R, Messinis AM, Lin Z, Ackermann L. Chem 2021; 7: 1379
- 106d von Münchow T, Pandit NK, Dana S. et al. Nat Catal 2025; 8: 257
- 107 Zhu C, Stangier M, Oliveira JCA, Massignan L, Ackermann L. Chem Eur J 2019; 25: 16382
For further examples see:
For further examples see: