References and Notes
1
Nicolaou KC.
Dai WM.
Angew. Chem., Int. Ed.
Engl.
1991,
30:
1387
2
Jones RR.
Bergman RG.
J. Am. Chem. Soc.
1972,
94:
660
3a
Magnus P.
Carter A.
J.
Am. Chem. Soc.
1988,
110:
1626
3b
Haseltine JN.
Danishefsky SJ.
Schulte G.
J. Am. Chem. Soc.
1989,
111:
7638
3c
Mantlo NB.
Danishefsky SJ.
J.
Org. Chem.
1989,
5:
2781
3d
Haseltine JN.
Danishefsky SJ.
J.
Org. Chem.
1990,
55:
2576
3e
Maier E.
Greiner B.
Liebigs Ann.
1992,
855
3f
Semmelhack MF.
Gallagher JJ.
Minami T.
Date T.
J. Am. Chem.
Soc.
1993,
115:
11618
3g
Jones GB.
Fouad FS.
Curr.
Pharm. Des.
2002,
8:
2415
3h
Semmelhack MF.
Wu LY.
Pascal RA.
Ho DM.
J.
Am. Chem. Soc.
2003,
125:
10496
4
Basak A.
Mandal S.
Bag SS.
Chem.
Rev.
2003,
103:
4077
5a
Maier ME.
Brandstetter T.
Tetrahedron
Lett.
1992,
33:
7511
5b
Maier ME.
Brandstetter T.
Liebigs
Ann. Chem.
1993,
1009
5c
Maier ME.
Langenbacher D.
Synlett
1994,
713
5d
Nishikawa T.
Ino A.
Isobe M.
Tetrahedron
1994,
50:
1449
5e
Semmelhack MF.
Jaskowski M.
Sarpong R.
Ho DM.
Tetrahedron
Lett.
2002,
43:
4947
5f
Banfi L.
Basso A.
Guanti G.
Paravidino M.
Riva R.
Scapolla C.
Arkivoc
2006,
(vi):
15
5g
Banfi L.
Basso A.
Guanti G.
Riva R.
Arkivoc
2006,
(vii):
261
6a
Nicolaou KC.
Zuccarello G.
Ogawa Y.
Schweiger EJ.
Kumazawa T.
J. Am. Chem. Soc.
1988,
110:
4866
6b
Nicolaou KC.
Sorensen EJ.
Discordia R.
Hwang CK.
Minto RE.
Bharucha KN.
Bergman RG.
Angew. Chem., Int.
Ed. Engl.
1992,
31:
1044
6c
Nicolaou KC.
Zuccarello G.
Riemer C.
Estevez VA.
Dai
WM.
J. Am. Chem. Soc.
1992,
114:
7360
6d
Schreiner
PR.
J. Am. Chem. Soc.
1998,
120:
4184
7a
Magnus P.
Fortt S.
Pitterna T.
Snyder JP.
J.
Am. Chem. Soc.
1990,
112:
4986
7b
Magnus P.
Parry D.
Iliadis T.
Eisenbeis SA.
Fairhurst RA.
J. Chem. Soc., Chem. Commun.
1994,
1541
8a
Pape AR.
Kaliappan KP.
Kündig EP.
Chem.
Rev.
2000,
100:
2917
8b
Kündig EP.
Pache S.
In Science of Synthesis
Vol.
2:
Noyori R.
Imamoto T.
Thieme;
Stuttgart:
2002.
p.155-228
8c
Kündig EP. In Topics
in Organometallic Chemistry
Vol. 7:
Springer;
Berlin:
2004.
8d
Schmalz H.-G.
Dehmel F. In Transition
Metals for Organic Synthesis
2nd ed., Vol 1:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
p.601-617
8e
Kündig EP.
Laxmisha MS.
Cannas R.
Tchertchian S.
Liu
RG.
Helv. Chim.
Acta
2005,
88:
1063
8f
Rosillo M.
Dominguez G.
Perez-Castells J.
Chem.
Soc. Rev.
2007,
36:
1589
9
Kündig EP.
Sau M.
Pérez-Luna A.
Synlett
2006,
2114
10
Nicholas KM.
Acc.
Chem. Res.
1987,
20:
207
11a
Magnus P.
Carter P.
Elliott J.
Lewis R.
Harling J.
Pitterna T.
Bauta WE.
Fortt S.
J.
Am. Chem. Soc.
1992,
114:
2544
11b
Magnus P.
Tetrahedron
1994,
50:
1397
12
Crowther GP.
Sundberg RJ.
Sarpeshkar AM.
J. Org: Chem.
1984,
49:
4657
13
Mahaffy CAL.
Pauson PL.
Inorg.
Synth.
1979,
19:
154
14
Spectroscopic
Data
Compound
rac
-4: ¹H
NMR (400 MHz, C6D6): δ = 0.18
(d, J = 4.8
Hz, 6 H), 0.29 (s, 9 H), 0.98 (s, 9 H), 1.80 (t, J = 2.8 Hz,
1 H), 2.10 (m, 1 H), 2.25 (m, 2 H), 3.02 (dt, J = 8.8,
4.0 Hz, 1 H), 4.75 (d, J = 4.3
Hz, 1 H), 4.94 (dd, J = 10.1,
1.8 Hz, 1 H), 5.06 (d, J = 16.4
Hz, 1 H), 5.66 (ddd, J = 16.9,
9.8, 8.1 Hz, 1 H), 6.27 (d, J = 3.3
Hz, 1 H). ¹³C NMR (100 MHz, C6D6): δ = -3.8, -0.3,
18.9, 21.8, 26.6, 39.4, 43.6, 70.7, 82.7, 101.7, 115.1, 128.1, 138.4,
141.1, 152.4. IR: 3403, 2930, 2280, 1730, 1720, 1618, 1593, 1456,
1424, 1330, 1230, 4458, 1056, 1025, 768, 741 cm-¹.
MS: 347, 273, 249, 231, 217, 195, 163. HRMS: m/z calcd
for C20H35OSi2: 347.2226; found:
347.2230.
Compound
rac
-6: ¹H
NMR (400 MHz, C6D6): δ = 0.19
(dd, J = 5.0,
1.8 Hz, 6 H), 0.29 (s, 9 H), 0.98 (s, 9 H), 2.40 (m,
3
H), 3.16 (m, 1 H), 4.08 (s, 2 H), 4.79 (m, 1 H), 4.95 (d, J = 10.1 Hz,
1 H), 5.13 (d, J = 17.2
Hz, 1 H), 5.54 (m, 2 H), 5.70 (m, 1 H), 6.26 (bs, 1 H). ¹³C
NMR (100 MHz, C6D6):
δ = -3.8, -0.3,
12.3, 18.9, 23.1, 26.6, 39.7, 43.4, 46.7, 51.6, 80.8, 83.3, 95.5,
97.2, 101.7, 115.2, 118.5, 120.6, 128.7, 138.5, 141.2, 141.3, 152.5.
IR: 3420, 2954, 2928, 2214, 1623, 1572, 1473, 1407, 1361, 1330,
1245, 1203, 835 cm-¹. MS: 427, 355,
338, 279, 241. HRMS: m/z calcd
for C25H39O2Si2: 427.2483;
found: 427.2501.
Compound
rac
-8: ¹H
NMR (400 MHz, C6D6): δ = 0.24
(s, 9 H), 2.02 (m, 1 H), 2.15 (m, 1 H), 2.30 (m, 1 H), 2.74 (m,
1
H), 3.48 (m, 2 H), 3.52 (m, 1 H), 4.90 (m, 2 H), 5.28 (dt, J = 9.6, 2.8
Hz, 1 H), 5.66 (ddd, J = 17.1,
10.6, 6.6 Hz, 1 H), 6.29 (d, J = 9.9
Hz, 1 H), 6.55 (d, J = 5.3
Hz, 1 H). ¹³C NMR (100 MHz, C6D6): δ = -1.3,
26.3, 38.6, 39.5, 39.7, 52.0 109.5, 115.0, 140.1, 141.6. IR: 3585,
2953, 2089, 2050, 2016, 1639, 1601, 1426, 1316, 1277, 1246, 910,
835, 784, 760 cm-¹. MS: m/z = 598 [M + NH4
+],
581, 356, 339, 300. HRMS: m/z calcd
for C25H23O7SiCo2 [M + H+]:
580.9877; found: 580.9859.
Compound
rac
-2: ¹H
NMR (400 MHz, C6D6): δ = 0.33
(s, 9 H), 1.96 (m, 3 H), 2.35 (dd, J = 16.9,
4.3 Hz, 1 H), 2.53 (dd, J = 17.2,
4.5 Hz, 1 H), 3.21 (ddd, J = 16.9,
3.3, 2.0 Hz, 1 H), 4.12 (q, J = 8.8
Hz, 1 H), 4.84 (m, 2 H), 5.29 (m, 3 H), 6.49 (d, J = 2.8,
1 H). ¹³C NMR (100 MHz, C6D6): δ = -1.1, 23.5,
25.9, 38.2, 42.8, 46.7, 83.4, 84.2, 95.8, 97.7, 116.5, 120.8, 122.3,
140.7, 143.7, 158.3, 200,1. IR: 2280, 1656, 1611, 1450, 1328, 822
cm-¹. MS: m/z = 295,
279, 203, 190. HRMS: m/z calcd
for C19H22OSiNa [M + Na]:
317.1335; found : 317.1335.
Compound
rac
-9: ¹H
NMR (400 MHz, C6D6): δ = -0.01
(s, 9 H), 2.39 (m, 2 H), 2.69 (m, 4 H), 2.99 (dd, J = 14.3,
7.5 Hz 1 H), 4.91 (m, 2 H), 5.85 (ddd, J = 17.3,10.5,
6.4 Hz, 1 H), 6.33 (dd, J = 5.7,
1.5 Hz, 1 H), 6.68 (m, 1 H), 6.90 (m, 3 H). ¹³C
NMR (100 MHz, C6D6): δ = -1.5,
38.0, 41.0, 41.2, 47.7, 53.2, 114.8, 126.9, 128.6, 129.6, 131.2,
141.7, 156.0. IR: 2921, 1651, 1589, 1491, 1456, 1348, 1338, 1241,
1218, 1124, 985, 918, 856, 834, 744 cm-¹.
MS: m/z = 297, 283, 282.
HRMS: m/z calcd for C19H24NaOSi:
319.1488; found: 319.1491.
15
Doucet H.
Hierso JC.
Angew. Chem. Int.
Ed.
2007,
46:
834
16
Hamze A.
Provot O.
Brion JD.
Alami M.
J. Org. Chem.
2007,
72:
3868
17 SPARTAN’02, Wavefunction,
Inc., Irvine, CA;
http://www.wavefun.com.
18 A solution of 2 (50.1
mg, 0.17 mmol) and pyrene (9 mg, 0.04 mmol) in 1,4-cyclohexadiene
(5 mL) under N2 was heated in a sealed tube. After the
appropriate reaction time the sealed tube was cooled in H2O
and opened. An aliquot of 100 µL was removed and brought
to dryness in vacuo. The solid residue was taken up in pentane (1
mL) and then analyzed by HPLC [column: SiO2 SPHERI5,
solvent: hexane-i-PrOH (99:1);
flow rate: 1 mL/min, detector: UV, λ = 245;
sample loop: 5 µL]. The concentration of 2 and 9 was determined
as the area ratio of the peaks corresponding to 2, 9, and the internal standard.
19
O’Connor JM.
Friese SJ.
Rodgers BL.
J. Am. Chem. Soc.
2005,
127:
16342 ; and references cited therein