Subscribe to RSS
DOI: 10.1055/s-0028-1083535
Cross-Metathesis of Chiral N-tert-Butylsulfinyl Homoallylamines: Application to the Enantioselective Synthesis of Naturally Occurring 2,6-cis-Disubstituted Piperidines
Publication History
Publication Date:
15 October 2008 (online)

Abstract
The synthesis of piperidine alkaloids (+)-dihydropinidine (1), (+)-isosolenopsin (2a), (+)-isosolenopsin A (2b), and (2R,6R)-6-methylpipecolic acid (3a) hydrochlorides, based on cross-metathesis of chiral N-tert-butylsulfinyl homoallylamines with methyl vinyl ketone, is presented.
Key words
cross-metathesis - piperidine alkaloids - pipecolic acid derivatives - stereoselective allylation
- 1
Schneider M. In Alkaloids: Chemical and Biological Perspectives Vol. 10:Pelletier SW. Pergamon; Oxford: 1996. p.55-299 - For recent reviews on the stereoselective synthesis of 2,6-dialkylpiperidines, see:
-
2a
Bates RW.Sa-Ei K. Tetrahedron 2002, 58: 5957 -
2b
Buffat MGP. Tetrahedron 2004, 60: 1701 - 3
Attygale AB.Xu SC.McCormick KD.Meinwald J.Blankespoor CL.Eismer T. Tetrahedron 1993, 49: 9333 -
4a For
leading references on the enantioselective synthesis of dihydropinidine,
see:
Ciblat S.Besse P.Papastergiou V.Veschambre H.Canet JL.Troin Y. Tetrahedron: Asymmetry 2000, 11: 2221 ; and references therein -
4b To verify the NMR data,
see:
Wang X.Dong Y.Sun J.Xu X.Li R.Hu Y. J. Org. Chem. 2005, 70: 1897 -
5a For
the absolute configuration of isosolenopsins, see:
Leclerq S.Thirionet I.Broeders F.Daloze D.Vander Meer R.Braeekman JC. Tetrahedron 1994, 50: 8465 -
5b
For leading references on the enantioselective synthesis of isosolenopsins, see ref. 4.
- For leading references on cis-6-methylpipecolic acid, see:
-
6a
Swarbrick ME.Gosselin F.Lubell WD. J. Org. Chem. 1999, 64: 1993 -
6b
Davis FA.Zhang H.Lee SH. Org. Lett. 2001, 3: 759 -
6c
Troin Y.Carbonnel S. Heterocycles 2002, 57: 1807 -
7a
Deslongchamps P. Stereoelectronic Effects in Organic Chemistry Pergamon; New York: 1983. Chap. 6. -
7b
Stevens RV. Acc. Chem. Res. 1984, 17: 289 ; and references therein -
7c
Ryckman DM.Stevens RV.
J. Org. Chem. 1987, 52: 4274 -
8a
Randl S.Blechert S. J. Org. Chem. 2003, 68: 8879 -
8b
Randl S.Blechert S. Tetrahedron Lett. 2004, 45: 1167 -
8c
Gebauer J.Blechert S. Synlett 2005, 2826 -
8d
Dewi-Wülfing P.Gebauer J.Blechert S. Synlett 2006, 487 - For recent reviews, see:
-
9a
Connon SJ.Blechert S. Angew. Chem. Int. Ed. 2003, 42: 1900 -
9b
Hoveyda AH.Gillingham DG.Van Veldhuizen JJ.Kataoka O.Garber SB.Kingsburry JS.Harrity JPA. Org. Biomol. Chem. 2004, 2: 8 -
10a For
ring opening of chiral oxiranes with vinylmagnesium bromide, see:
Fürstner A.Thiel OR.Kindler N.Bartkowska B. J. Org. Chem. 2000, 65: 7990 -
10b For synthesis of chiral
homoallylamines using this approach, see:
Randl S.Blechert S. J. Org. Chem. 2003, 68: 8879 -
10c
See also ref. 8d.
- 11
Foubelo F.Yus M. Tetrahedron: Asymmetry 2004, 15: 3823 -
12a
Davis FA.Wu Y. Org. Lett. 2004, 6: 1269 -
12b
Dirscherl G.Rooshenas P.Schreiner PR.Lamaty F.König B. Tetrahedron 2008, 64: 3005 - For selected reviews, see:
-
13a
Ellman JA.Owens TD.Tang TP. Acc. Chem. Res. 2002, 35: 984 -
13b
Ellman JA. Pure Appl. Chem. 2003, 75: 39 -
13c
Zhou P.Chen BC.Davis FA. Tetrahedron 2004, 60: 8003 - 14
N-tert-Butanesulfinylimines are readily
prepared from aldehydes and N-tert-butanesulfinamides (Ss and Rs
are commercially available in >99% ee), following
the procedure reported in:
Liu G.Cogan DA.Owens TD.Tang TP.Ellman JA. J. Org. Chem. 1999, 64: 1278 - Allylation of tert-butylsulfinimines has also been reported by other authors using different metals and conditions. For selected examples, see:
-
15a
Cogan DA.Liu G.-C.Ellman JA. Tetrahedron 1999, 55: 8883 -
15b
Li S.-W.Batey RA. Chem. Commun. 2004, 1382 -
15c
Kolodney G.Sklute G.Perrone S.Knochel P.Marek I. Angew. Chem. Int. Ed. 2007, 46: 9291 - Poisoning of Pd and Pt catalysts is well documented. See for instance:
-
17a
Bartholomew CH.Agarwal PK.Katzer JR. Adv. Catal. 1982, 31: 135 -
17b
Barbier J.Lamy-Pitara E.Marecot P.Boitiaux JP.Cosyns J.Verna F. Adv. Catal. 1990, 37: 279 - 20 The procedure was adapted from:
Larcheveque M.Haddad M. Tetrahedron: Asymmetry 1999, 10: 4231 - For selected examples, see:
-
21a
Mannaioni G.Alesiani M.Carla V.Natalini B.Marinozi M.Pelliciari R.Moroni F. Eur. J. Pharmacol. 1994, 251: 201 -
21b
Skiles JW.Giannousis PP.Fales KR. Bioorg. Med. Chem. Lett. 1996, 6: 963 -
21c
Ornstein PL.Schoepp DD.Arnold MB.Jones ND.Deeter JB.Lodge D.Leander JD. J. Med. Chem. 1992, 35: 3111 -
21d For a recent review concerning
pipecolic acids, see:
Kadouri-Puchot C.Comesse S. Amino Acids 2005, 29: 101
References and Notes
Preparation of
Compound 6c: A solution of amine 5c (165 mg,
0.50 mmol), methyl vinyl ketone (140 mL, 1.65 mmol) and Hoveyda-Blechert
ruthenium catalyst (31 mg, 0.05 mmol) in anhyd CH2Cl2 (10
mL) was stirred for 60 h at
45 ˚C. The solvent
was evaporated and the residue was purified by flash chromatography
(silica gel, hexane-EtOAc) to give the title compound (137
mg, 0.37 mmol) as a pale brown oil; [α]D
²8 +20.0
(c 0.32, CHCl3). IR (neat): 3226,
1673, 1626 cm-¹. ¹H
NMR (300 MHz, CDCl3):
δ = 6.83
(dt, J = 16.0, 7.5 Hz, 1 H),
6.15 (d, J = 16.0 Hz, 1 H),
3.33-3.42 (m, 1 H), 3.09 (d, J = 7.7
Hz, 1 H), 2.51-2.56 (m, 2 H), 2.27 (s, 3 H), 1.22-1.55
(m, 20 H), 1.21 (s, 9 H), 0.88 (t, J = 7.6
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3):
δ = 198.3,
143.5 (CH), 133.9 (CH), 56.1, 56.0 (CH), 39.5 (CH2),
35.7 (CH2), 31.8 (CH2), 29.4 (CH2),
29.25 (CH2), 29.2 (CH2), 27.0 (Me), 25.6 (CH2),
22.55 (CH2), 22.5 (Me), 14.0 (Me). LRMS (MALDI): m/z = 372.281 [M + H], 394.286 [M + Na].
General Procedure
for the Reductive Amination of Cross-Metathesis Products: A
flame-dried flask was cooled under a stream of argon and charged
with Wilkinson’s catalyst (50 mg, 0.05 mmol) and a solution
of the corresponding enone (1.10 mmol) in EtOH (5.0 mL). A balloon
of H2 was connected to the flask and the reaction mixture
was stirred at r.t. overnight. After changing the solvent to n-hexane-t-BuOMe
(1:1), the resulting suspension was filtered through a short pad
of Celite to remove the solid Ph3PO. The organic solution
was concentrated (15 Torr) and the crude aminoketone was dissolved
in MeOH (3 mL) and 4 M HCl in dioxane (1.5 mL) was added at 0 ˚C.
After 1 h stirring at the same temperature, solvents were evaporated
under vacuum. The residue was dissolved in citrate-phosphate
buffer (1.5 mL) and THF (1.5 mL), adjusting the pH to 5 with 1 M
NaOH if necessary. To this solution was added NaCNBH3 (50
mg, 0.80 mmol) at
0 ˚C and the mixture was stirred
for 3 h at 23 ˚C. The reaction mixture was basified with
15% NaOH (10 mL) and extracted with CH2Cl2 (3 × 20
mL). The organic layer was washed with brine, dried over K2CO3 and
concentrated (15 Torr) to afford the desired piperidines as pale
yellow oils. The corresponding hydrochlorides were crystallized
using ethereal HCl and recrystallization from EtOH-EtOAc
(1:3) afforded pure products (cis/trans >99:1), having spectral data
identical with those reported in literature.4b
Specific rotations obtained for hydrochlorides 1, 2a, and 2b:
(+)-Dihydropinidine
hydrochloride: [α]D
²0 +14.2
(c 0.66, EtOH) {Lit.4a [α]D
²0 +14.1
(c 1.0, EtOH)}.
(+)-Isosolenopsin
hydrochloride: [α]D
²0 +10.2
(c 0.93, CHCl3) {Lit.4a [α]D
²0 +11.1
(c 0.92, CHCl3)\.
(+)-Isosolenopsin
A hydrochloride: [α]D
²0 +11.0
(c 1.00, CHCl3) {Lit.4a [α]D
²0 +10.0
(c 1.17, CHCl3)}.