Subscribe to RSS
DOI: 10.1055/s-0028-1083547
Synthesis of Five- and Six-Membered-Ring Compounds by Environmentally Friendly Radical Cyclizations Using Kolbe Electrolysis
Publication History
Publication Date:
15 October 2008 (online)
Abstract
Substituted carbocycles, tetrahydrofurans, and tetrahydropyrans can be efficiently obtained from ω-unsaturated carboxylic acids. Our methodology involves a Kolbe decarboxylation followed by an intramolecular radical cyclization and a radical-radical cross-coupling process.
Key words
cyclization - electron transfer - green chemistry - heterocycles - radical reactions
-
1a
Giese B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds Pergamon; Oxford: 1986. -
1b
Curran DP. In Comprehensive Organic Synthesis 4:Trost BM.Fleming I.Semmelhack MF. Pergamon; Oxford: 1991. p.715 -
1c
Beckwith ALJ. Chem. Soc. Rev. 1993, 143 -
2a
Rossi RA.Penenory AB. Curr. Org. Synth. 2006, 3: 121 -
2b
Majumdar KC.Basu PK.Chattopadhyay SK. Tetrahedron 2006, 63: 793 -
2c
Walton JC. Top. Curr. Chem. 2006, 264: 163 -
3a
Davies AG. J. Chem. Res. 2006, 3: 141 -
3b
Büchi G.Wüst H. J. Org. Chem. 1979, 44: 546 -
3c
Stork G.Mook R. J. Am. Chem. Soc. 1983, 105: 3720 -
4a
Danishefsky S.Chackalamannil S.Uang B.-J. J. Org. Chem. 1982, 47: 2231 -
4b
Corey E.Shih C.Shih N.-Y.Shimoji K. Tetrahedron Lett. 1984, 25: 5013 -
5a
Chatgilialoglu C.Ferreri C.Gimisis T. The Chemistry of Organic Silicon Compounds Vol. 2:Rappoport S.Apeloig Y. Wiley; London: 1998. p.1539 -
5b
Arya P.Samson C.Lesage M.Griller D. J. Org. Chem. 1990, 55: 6248 -
5c
Gandon LA.Russell AG.Guveli T.Brodwolf AE.Kariuki BM.Spencer N.Snaith JS. J. Org. Chem. 2006, 71: 5198 -
5d
Varlamov VT.Denisov ET.Chatgilialoglu C. J. Org. Chem. 2001, 66: 6317 -
5e
Wnuk SF.Garcia PI.Wang Z. Org. Lett. 2004, 6: 2047 -
6a
Zard SZ. Angew. Chem., Int. Ed. Engl. 1997, 36: 673 -
6b
Walter W.Bode KD. Angew. Chem., Int. Ed. Engl. 1967, 6: 281 -
7a
Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry Elsevier Science; Amsterdam: 2000. -
7b
Duñach EA.Esteves P.Freitas AM.Medeiros MJ.Olivero S. Tetrahedron Lett. 1999, 40: 8693 -
7c
Toyota M.Ilangovan A.Kashiwagi Y.Ihara M. Org. Lett. 2004, 6: 3629 -
7d
Torii S.Inokuchi T.Yukawa T. J. Org. Chem. 1985, 50: 5875 -
7e
Miranda JA.Wade CJ.Little RD. J. Org. Chem. 2005, 70: 8017 -
8a
Duñach E.Esteves AP.Medeiros MJ.Olivero S. Tetrahedron Lett. 2004, 45: 7935 -
8b
Toyota M.Ilangovan A.Kashiwagi Y.Ihara M. Org. Lett. 2004, 6: 3629 -
8c
Torii S.Inokuchi T.Yukawa T. J. Org. Chem. 1985, 50: 5875 -
9a
Scheffold R. In Transition Metals in Organic SynthesisScheffold R. Wiley; New York: 1983. p.355 -
9b
Scheffold R.Dike M.Dike S.Herold T.Walder L. J. Am. Chem. Soc. 1980, 102: 3642 -
9c
Scheffold R.Abrecht S.Orlinski R.Ruf H.-R.Stamouli P.Tinembart O.Walder L.Weymuth C. Pure Appl. Chem. 1987, 59: 363 -
10a
Utley J. Chem. Soc. Rev. 1997, 26: 157 -
10b
Torii S.Tanaka H. In Organic Electrochemistry 4th ed:Lund H.Hammerich O. Marcel Dekker; New York: 2001. p.499 - For the preparation of Kolbe dimers, see:
-
11a
Brown AC.Walker J. Justus Liebigs Ann. Chem. 1891, 261: 107 -
11b
Fichter F.Lurie S. Helv. Chim. Acta 1933, 16: 885 - For Kolbe cross-coupling reactions, see:
-
12a
Seebach D.Renaud P. Helv. Chim. Acta 1985, 68: 2342 -
12b
Kubota T.Aoyagi R.Sando H.Kawasumi M.Tanaka T. Chem. Lett. 1987, 1435 -
13a
Garwood RF.Weedon BCL. J. Chem. Soc., Perkin Trans. 1 1973, 2714 -
13b
Weiguny J.Schäfer HJ. Electroorg. Synth. 1993, 57: 235 -
13c
Matzeit A.Schäfer H.Amatore C. Synthesis 1995, 1432 - Although a radical adsorbed on an electrode surface might display altered behavior, we believe that the slightly nucleophilic character of the alkyl radical 3 is preserved. See, for example:
-
14a
Chkir M.Lelandais D. J. Chem. Soc., Chem. Commun. 1971, 1369 -
14b
Giese B. Angew. Chem., Int. Ed. Engl. 1983, 22: 753 - For a scale measuring the nucleophilicity of radicals, see:
-
14c
De Vleeschouwer F.Van Speybroeck V.Waroquier M.Geerlings P.De Proft F. Org. Lett. 2007, 9: 2721 - 15
Heinhorn J.Soulier J.-L.Bacquet C.Lelandais D. Can. J. Chem. 1983, 61: 584
References and Notes
Representative
Procedure for the Electrochemical Synthesis of Carbocycles and Heterocycles
In
an undivided beaker-type cell (100 mL) bearing two electrodes of
platinum foil (1.3 cm × 1.3 cm × 0.5
mm), acid 22a (500 mg, 2.47 mmol) and a
fivefold excess of AcOH (707 mL, 12.38 mmol) were dissolved in MeOH
(50 mL). The acids were partially neutralized by NaOMe to obtain
a current density of 100 mA/cm². The
reaction was monitored by TLC or GC and stopped when the pH of the
solution changed from 5 to 8; normally 1.2-1.4 F/mol
had been consumed. The reaction mixture was then concentrated under
reduced pressure. The residue was treated with a sat. aq solution
of NaHCO3, and extracted with CH2Cl2 (3 × 10 mL).
The organic layers were collected, dried on Na2SO4, and
concentrated under reduced pressure. The crude material was purified
by flash chromatography (PE-Et2O, 4:1) to afford
366 mg of compound 23a (86%, mixture
of two inseparable diastereomers, A/B = 1:1)
as a colorless liquid smelling of fruit. GC [60 ˚C
(3 min), 15 ˚C/min → 290 ˚C, 290 ˚C
(1 min)]: t
R = 10.90,
11.02 min. IR (neat): 647, 732, 915, 1047, 1076, 1179, 1262, 1377,
1459, 1725, 2873, 2978. ¹H NMR (300 MHz, CDCl3): δ = 1.15
(d, 3 H, A, J = 6.6 Hz),
1.20 (d, 3 H, B, J = 6.6
Hz), 1.24 (t, 3 H, A, J = 7.2
Hz), 1.26 (t, 3 H, B, J = 7.2
Hz), 1.50-1.65 (m, 1 H, A + B), 1.95-2.20
(m, 1 H, A + B), 2.25-2.55 (m, 2 H, A + B),
3.40-3.46 (dt, 1 H, A + B, J = 7.8,
2.2 Hz), 3.60-3.95 (m, 3 H, A + B), 4.08-4.18
(m, 2 H, A + B). ¹³C NMR (75
MHz, CDCl3): δ = 14.20
(A), 14.23 (B), 16.1 (A), 16.2 (B), 30.3 (B), 30.8 (A), 42.39 (A),
42.41 (B), 42.90 (B), 42.93 (A), 60.4 (A + B), 68.0 (A),
68.1 (B), 71.1 (A), 71.9 (B), 175.7 (A + B). MS (APCI): m/z (%) = 82.9
(15), 126.9 (95), 144.9 (15), 173.0(10). HRMS (sodium complex): m/z calcd: 195.0997; found:
195.0998.
Compound 27 originates from a possible rearrangement of either the primary radical or the derived carbocation. Studies are currently ongoing to elucidate this intriguing transformation.