RSS-Feed abonnieren
DOI: 10.1055/s-0028-1083549
A Short and Efficient Synthesis of 3-Spiro-α-methylene-γ-butyrolactone Oxindolones from Isomerised Bromo Derivatives of Morita-Baylis-Hillman Adducts
Publikationsverlauf
Publikationsdatum:
16. Oktober 2008 (online)
Abstract
A short and efficient synthesis of α-methylene-γ-butyrolactone-3-spirooxindolones by the reaction of isomerised bromo derivatives of Morita-Baylis-Hillman adducts of isatin and formaldehyde followed by acid-catalysed lactonisation has been achieved. The oxindolidino allyl bromide has been used for the first time for the allylation of aldehydes to afford a 2-oxindolidino homoallylic alcohol which on acid-catalysed lactonisation delivered the title compounds in excellent yield. Synthetic transformation of the spirolactone oxindole is demonstrated with the preparation of an oxirane derivative and a second Morita-Baylis-Hillman adduct.
Key words
isatin - allylindium - Morita-Baylis-Hillman adduct - lactonisation - spirolactone oxindoles
- 1
Marti C.Carreira EM. Eur. J. Org. Chem. 2003, 2209 - 2
Galliford CV.Scheidt KV. Angew. Chem. Int. Ed. 2007, 46: 2 - 3
Yong SR.Williams MC.Pyne SG.Ung AT.Skelton BW.White AH.Turner P. Tetrahedron 2005, 61: 8120 - 4
Miyamoto H.Okawa Y.Nakazaki A.Kobayashi S. Angew. Chem. Int. Ed. 2006, 45: 2274 - 5
Ding K.Lu Y.Nikolovska-Coleska Z.Wang G.Qiu S.Shangary S.Gao W.Qin D.Stuckey J.Krajewski K.Roller PP.Wang S. J. Med. Chem. 2006, 49: 3432 - 6
Lo MMC.Neumann CS.Nagayama S.Perlstein EO.Schreiber SL. J. Am. Chem. Soc. 2004, 126: 16077 - 7
Hilton ST.Ho TCT.Pljevaljcic G.Jones K. Org. Lett. 2000, 2: 2639 - 8
Ogura M.Cordell GA.Fransworth NR. Phytochemistry 1978, 17: 957 - 9
Rodriguez E.Towers GHN.Mitchell JC. Phytochemistry 1976, 15: 1573 - 10
Sohn SS.Rosen EL.Bode JW. J. Am. Chem. Soc. 2004, 126: 14370 - 11
Burstein C.Glorius F. Angew. Chem. Int. Ed. 2004, 43: 6205 - 12
Sawant MS.Nadkarni PJ.Desai UR.Katoch R.Korde SS.Trivedhi GK. J. Chem. Soc., Perkin Trans. 1 1999, 2537 - 13
Collins I. J. Chem. Soc., Perkin Trans. 1 1999, 1377 - 14
Nair V.Vellalath S.Poonoth M.Mohan R.Suresh E. Org. Lett. 2006, 8: 507 - 15
Paquette LA.Bennett GD.Isaac MB.Chhatriwalla A. J. Org. Chem. 1998, 63: 1836 - 16
Paquette LA.Mendez-Andino J. Tetrahedron Lett. 1999, 40: 4301 - 17
Choudhury PK.Foubelo F.Yus M. Tetrahedron Lett. 1998, 39: 3581 - 18
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 - 19
Tan KL.Jacobson EN. Angew. Chem. Int. Ed. 2007, 46: 1315 - 20
Loh T.-P.Chua G.-L. Chem. Commun. 2006, 2739 - 21
Nair V.Ros S.Jayan CN.Pillai BS. Tetrahedron 2004, 60: 1959 - 22
Ranu BC. Eur. J. Org. Chem. 2000, 2347 - 23
Shanmugam P.Vaithiyanathan V.Viswambharan B. Tetrahedron Lett. 2006, 47: 6851 - 24
Shanmugam P.Vaithiyanathan V.Viswambharan B.Madhavan S. Tetrahedron Lett. 2007, 48: 9190 - 25
Shanmugam P.Vaithiyanathan V.Viswambharan B. Aust. J. Chem. 2007, 60: 296 - 26
Shanmugam P.Vaithiyanathan V.Viswambharan B. Tetrahedron 2006, 62: 4342 - 27
Shanmugam P.Viswambharan B.Madhavan S. Org. Lett. 2007, 9: 4095 - 28
Shanmugam P.Viswambharan B.Selvakumar K.Madhavan S. Tetrahedron Lett. 2008, 49: 2611 - 29
Shanmugam P.Vaithiyanathan V. Tetrahedron 2008, 64: 3322 - 30
Shanmugam P.Vaithiyanathan V.Selvakumar K. Tetrahedron Lett. 2008, 49: 2119 - 31
Silva JFM.Garden SJ.Pinto AC. J. Braz. Chem. Soc. 2001, 12: 273 - 32
Isaac MB.Chan T.-H. Tetrahedron Lett. 1995, 36: 8957 - 33
Paquette LA.Thomas TM. J. Am. Chem. Soc. 1996, 118: 1931
References and Notes
Typical Procedure:
A mixture of isomerised MBH adduct (100 mg), 40% aq formaldehyde
(1.2 equiv) and indium powder (1.6 equiv) in DMF (1 mL) was stirred
at r.t. for 6 h. After completion (TLC), the reaction was quenched
with sat. NH4Cl and stirred further for half an hour.
The resulting crude homoallylic alcohol was extracted with EtOAc,
dried and concentrated. The crude homoallylic alcohol compound in
benzene (1 mL) was subjected to lactonisation with PTSA (0.2 equiv)
under reflux for 30 min. After the completion of the reaction (TLC),
PTSA was removed by washing with H2O. The organic layer
was washed with brine, evaporated in vacuo and then purified by
silica gel column chromatog-raphy to afford the products (65-85%).
Spectral Data for Selected Compounds: Compound
4: FTIR (CH2Cl2): 1613, 1715, 3004 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ = 2.65
(s, 3 H), 3.20 (s, 3 H), 3.90 (s, 3 H), 6.79-6.81 (d, 1
H, J = 7.8 Hz), 6.95-7.00
(d, 1 H, J = 7.8 Hz), 7.26-7.31
(d, 2 H, J = 7.8 Hz). MS (FAB): m/z calcd
for C13H13NO3: 231.24; found [M + 1]:
232.38. Compound 5: FTIR (CH2Cl2):
1613, 1715, 2995 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ = 2.44
(s, 3 H), 3.23 (s, 3 H), 3.96 (s, 3 H), 6.81-6.84 (d, 1
H, J = 7.8 Hz), 7.03-7.08
(d, 1 H, J = 7.8 Hz), 7.29-7.34
(d, 1 H, J = 7.8 Hz), 7.51-7.54
(d, 1 H, J = 7.8 Hz). MS (FAB): m/z calcd
for C13H13NO3: 231.24; found [M + 1]: 232.35. Compound 6: FTIR (CH2Cl2):
1115, 1613, 1715, 2920, 3265 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ = 1.70
(br s, 1 H), 3.30 (s, 3 H), 3.50 (s, 3 H), 3.78-3.81 (d,
1
H, J = 11.4 Hz), 4.13-4.17
(d, 1 H, J = 11.4 Hz), 6.26
(s,
1 H), 6.64 (s, 1 H), 6.88-6.91 (m, 1 H),
7.00-7.05 (m, 2 H), 7.20-7.30 (m, 1 H). MS (FAB): m/z calcd
for C14H15NO4: 261.27; found [M + 1]:
262. 38. Compound 7: FTIR (CH2Cl2):
1115, 1613, 1715, 1766, 2920 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ =3.26
(s, 3 H), 4.41-4.44 (d, 1 H, J = 9.3
Hz), 4.68-4.71 (d, 1 H, J = 9.3
Hz), 5.35 (s, 1 H), 6.31 (s, 1 H), 6.91-6.94 (d, 1 H, J = 6.0 Hz), 7.11-7.21
(m, 2 H), 7.36-7.40 (d, 1 H, J = 6.0
Hz). ¹³C NMR (75 MHz, CDCl3/TMS): δ = 27.1,
54.5, 73.0, 108.2, 109.2, 109.5, 122.5, 123.2, 130.3, 137.5, 143.8,
168.47, 175.5. MS (FAB): m/z calcd for C13H11NO3:
229.23; found [M + 1]: 230.3. Compound 18: FTIR (CH2Cl2):
1116, 1618, 1720, 1770, 3020 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ = 2.34
(s,
3 H), 3.20 (s, 3 H), 4.40-4.43 (d, 1 H, J = 9.0 Hz), 4.67-4.70 (d,
1 H, J = 9.0 Hz), 5.36 (s, 1
H), 6.36 (s, 1 H), 6.80-6.82 (d, 1 H, J = 6.0
Hz), 7.01 (s, 1 H), 7.18-7.16 (d, 1 H, J = 6.0 Hz). ¹³C
NMR (75 MHz, CDCl3/TMS): δ = 20.9,
26.7, 54.3, 72.6, 109.1, 123.7, 124.4, 129.8, 130.6, 133.5, 137.4,
141.0, 168.32, 175.2. MS (FAB): m/z calcd for C14H13NO3:
243.25; found [M + 1]: 244.3. Compound 19: FTIR (CH2Cl2):
1114, 1347, 1610, 1688, 1731, 1770, 2925 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ = 3.32
(s, 3 H), 4.45-4.48 (d, 1 H, J = 9.0
Hz), 4.69-4.72 (d, 1 H, J = 9.0
Hz), 5.36 (s, 1 H), 6.41 (s, 1 H), 7.07-7.09 (d, 1 H, J = 6.0 Hz), 7.75 (s, 1 H),
7.92-7.94 (d, 1 H, J = 6.0
Hz), 9.91 (s, 1 H). ¹³C NMR (75 MHz, CDCl3/TMS): δ = 27.1,
53.9, 72.1, 105.4, 123.6, 125.0, 130.9, 132.74, 133.7, 136.6, 148.9,
167.6, 175.4, 190.1. MS (FAB): m/z calcd for C14H11NO4:
257.24; found [M + 1]: 258.6. Compound 24: FTIR (CH2Cl2):
1613, 1715, 1750, 3004 cm-¹. ¹H
NMR (300 MHz, CDCl3/TMS): δ = 3.20
(s,
3 H), 3.37-3.41 (d, 1 H, J = 12.0
Hz), 3.81-3.85 (d, 1 H, J = 12.0
Hz), 4.25-4.28 (d, 1 H, J = 9.0
Hz), 4.78-4.82 (d, 1 H, J = 9.0
Hz), 6.99-7.02 (d, 1 H, J = 9.0
Hz), 7.14-7.26 (m,
2 H), 7.42-7.47 (t,
1 H, J = 9.0 Hz). MS (FAB): m/z calcd
for C13H11NO4: 245.24; found [M + 1]:
246.38. Compound 25: FTIR (CH2Cl2):
1613, 1715, 1750, 3004, 3282 cm-¹. ¹H NMR
(300 MHz, CDCl3/TMS): δ = 1.68
(s, 1 H), 3.32 (s,
3 H), 4.45-4.48 (d, 1 H, J = 9.0 Hz), 4.69-4.72
(d, 1 H, J = 9.0 Hz), 5.36 (s,
1 H), 5.58 (s, 1 H), 5.63 (s, 1 H), 6.41 (s,
1 H), 7.06-7.09
(d, 1 H, J = 6.0 Hz), 7.75 (s,
1 H), 7.91-7.96 (d, 1 H, J = 6.0
Hz). MS (FAB): m/z calcd for C17H14N2O4: 310.30;
found [M + 1]: 311.41.