Horm Metab Res 2009; 41(2): 86-97
DOI: 10.1055/s-0028-1087203
Review

© Georg Thieme Verlag KG Stuttgart · New York

Tools for Predicting the Risk of Type 2 Diabetes in Daily Practice

P. E. H. Schwarz 1 , 2 , J. Li 1 , J. Lindstrom 3 , J. Tuomilehto 2 , 3 , 4
  • 1Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
  • 2Department of Public Health, University of Helsinki, Helsinki, Finland
  • 3Diabetes Unit, Department of Epidemiology and Health Promotion, National Public Health Institute, Helsinki, Finland
  • 4South Ostrobothnia Central Hospital, Seinäjoki, Finland
Weitere Informationen

Publikationsverlauf

received 18.07.2008

accepted 11.09.2008

Publikationsdatum:
19. November 2008 (online)

Abstract

The discussion about the diagnosis and treatment of type 2 diabetes – and, more generally, dysglycaemia – should be framed in terms of a continuum of risk. A variety of tools have been developed to identify individuals with an increased risk of developing type 2 diabetes and to quantify the probability of type 2 diabetes either cross-sectionally or prospectively. Such scores are based on traditional risk factors for diabetes, such as age, body mass index (BMI), and family history, while others also evaluate metabolic risk factors such as lipid levels. The performance of a diabetes risk-prediction tool is generally assessed by measuring its accuracy, availability, practicability, and costs. This review discusses the validity and use of today's available major risk-prediction tools for clinical practice, and assesses the scope and cost-effectiveness of available tools. Among these prediction tools, American Diabetes Association (ADA) Risk Tools, Finnish Diabetes Risk Score (FINDRISC), National Health and Nutrition Examination Survey (NHANES) Risk Score, and Study to Prevent Non-Insulin Dependents Diabetes Mellitus (STOP-NIDDM) Risk Score were of our concern. We conclude that the FINDRISC tool is currently the best available tool for use in clinical practice in Caucasian populations, but modifications may be required if applied to other ethnic groups.

References

  • 1 Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years.  Diabetes Care. 1999;  22 233-240
  • 2 Colette C, Monnier L. Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes.  Horm Metab Res. 2007;  39 683-686
  • 3 Schwarz PE, Bornstein SR, Hanefeld M. Elevated fasting glucose levels predicts IGT and diabetes also in middle-age subjects.  Diabetes Res Clin Pract. 2007;  77 148-150
  • 4 Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study.  Bmj. 2000;  321 405-412
  • 5 Alberti KG. The clinical implications of impaired glucose tolerance.  Diabet Med. 1996;  13 927-937
  • 6 Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, Wong ML, Bornstein SR. The Metabolic Syndrome – a global challenge for prevention.  Horm Metab Res. 2007;  39 777-780
  • 7 International Diabetes Federation .Diabetes Atlas 2003. Brussels: International Diabetes Federation 2003
  • 8 American Diabetes Association . Diagnosis and classification of diabetes mellitus.  Diabetes Care. 2005;  28 ((Suppl 1)) S37-S42
  • 9 Diagnosis and classification of diabetes mellitus.  Diabetes Care. 2006;  29 ((Suppl 1)) S43-S48
  • 10 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.  Diabetic Med. 1998;  15 539-553
  • 11 American Diabetes Association . Report of the expert committee on the diagnosis and classification of diabetes mellitus.  Diabetes Care. 2003;  26 ((Suppl 1)) S5-S20
  • 12 Cheng D. Prevalence, predisposition and prevention of type II diabetes.  Nutr Metab (Lond). 2005;  2 29
  • 13 Lindstrom J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemio K, Hamalainen H, Harkonen P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Mannelin M, Paturi M, Sundvall J, Valle TT, Uusitupa M, Tuomilehto J. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study.  Lancet. 2006;  368 1673-1679
  • 14 Borch-Johnsen K, Colagiuri S, Balkau B, Glumer C, Carstensen B, Ramachandran A, Dong Y, Gao W. Creating a pandemic of prediabetes: the proposed new diagnostic criteria for impaired fasting glycaemia.  Diabetologia. 2004;  47 1396-1402
  • 15 Schwarz PE, Bornstein SR. Pre-diabetes and metabolic syndrome in Germans.  Horm Metab Res. 2006;  38 359
  • 16 Kosaka K, Mizuno Y, Kuzuya T. Reproducibility of the oral glucose tolerance test and the rice-meal test in mild diabetics.  Diabetes. 1966;  15 901-904
  • 17 Mooy JM, Grootenhuis PA, Vries H de, Kostense PJ, Popp-Snijders C, Bouter LM, Heine RJ. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study.  Diabetologia. 1996;  39 298-305
  • 18 Ko GT, Chan JC, Woo J, Lau E, Yeung VT, Chow CC, Cockram CS. The reproducibility and usefulness of the oral glucose tolerance test in screening for diabetes and other cardiovascular risk factors.  Ann Clin Biochem. 1998;  35 ((Pt 1)) 62-67
  • 19 Zimmet P, Shaw J, Alberti KG. Preventing Type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view.  Diabet Med. 2003;  20 693-702
  • 20 Chaturvedi N. The burden of diabetes and its complications: trends and implications for intervention.  Diabetes Res Clin Pract. 2007;  76 ((Suppl 1)) S3-S12
  • 21 Schwarz PE, Peltonen M. Prevention of type 2 diabetes–lessons we have learnt for implementation.  Horm Metab Res. 2007;  39 636-641
  • 22 Valensi P, Schwarz EH, Hall M, Felton AM, Maldonato A, Mathieu C. Pre-diabetes essential action: a European perspective.  Diabetes Metab. 2005;  31 606-620
  • 23 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial.  JAMA. 2003;  290 486-494
  • 24 Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;  346 393-403
  • 25 Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study.  Diabetes Care. 1997;  20 537-544
  • 26 Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1).  Diabetologia. 2006;  49 289-297
  • 27 Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial.  Lancet. 2006;  368 1096-1105
  • 28 Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.  N Engl J Med. 2001;  344 1343-1350
  • 29 Global Guideline for Type 2 Diabetes: recommendations for standard, comprehensive, and minimal care.  Diabet Med. 2006;  23 579-593
  • 30 Waugh N, Scotland G, MacNamee P, Gillett M, Brennan A, Goyder E, Williams R, John A. Screening for type 2 diabetes: literature review and economic modelling.  Health Technol Assess. 2007;  11 iii-iv , ix–xi, 1–125
  • 31 Meigs JB, Williams K, Sullivan LM, Hunt KJ, Haffner SM, Stern MP, Gonzalez Villalpando C, Perhanidis JS, Nathan DM, D’Agostino Jr RB, D’Agostino Sr RB, Wilson PW. Using metabolic syndrome traits for efficient detection of impaired glucose tolerance.  Diabetes Care. 2004;  27 1417-1426
  • 32 Rolka DB, Narayan KM, Thompson TJ, Goldman D, Lindenmayer J, Alich K, Bacall D, Benjamin EM, Lamb B, Stuart DO, Engelgau MM. Performance of recommended screening tests for undiagnosed diabetes and dysglycemia.  Diabetes care. 2001;  24 1899-1903
  • 33 Schmidt MI, Duncan BB, Vigo A, Pankow J, Ballantyne CM, Couper D, Brancati F, Folsom AR. Detection of undiagnosed diabetes and other hyperglycemia states: the Atherosclerosis Risk in Communities Study.  Diabetes Care. 2003;  26 1338-1343
  • 34 Colagiuri S, Hussain Z, Zimmet P, Cameron A, Shaw J. Screening for type 2 diabetes and impaired glucose metabolism: the Australian experience.  Diabetes Care. 2004;  27 367-371
  • 35 Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice.  Diabetes/Metabolism Res Rev. 2000;  16 164-171
  • 36 Glumer C, Carstensen B, Sandbaek A, Lauritzen T, Jorgensen T, Borch-Johnsen K. A Danish diabetes risk score for targeted screening: the Inter99 study.  Diabetes Care. 2004;  27 727-733
  • 37 Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test?.  Ann Internal Med. 2002;  136 575-581
  • 38 Tunstall-Pedoe H. The Dundee coronary risk-disk for management of change in risk factors.  BMJ. 1991;  303 ((6805)) 744-747
  • 39 Lindstrom J, Tuomilehto J. The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk.  Diabetes Care. 2003;  26 725-731
  • 40 Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment.  JAMA. 1996;  275 1571-1576
  • 41 Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, Pfeiffer AF, Spranger J, Thamer C, Haring HU, Fritsche A, Joost HG. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes.  Diabetes Care. 2007;  30 510-515
  • 42 Herman WH, Smith PJ, Thompson TJ, Engelgau MM, Aubert RE. A new and simple questionnaire to identify people at increased risk for undiagnosed diabetes.  Diabetes Care. 1995;  18 382-387
  • 43 Pearson TL, Pronk NP, Tan AW, Halstenson C. Identifying individuals at risk for the development of type 2 diabetes mellitus.  Am J Managed Care. 2003;  9 57-66
  • 44 Hidvegi T, Hetyesi K, Biro L, Jermendy G. Screening for metabolic syndrome in hypertensive and/or obese subjects registered in primary health care in Hungary.  Med Sci Monit. 2003;  9 CR328-CR334
  • 45 Mohan V, Deepa R, Deepa M, Somannavar S, Datta M. A simplified Indian Diabetes Risk Score for screening for undiagnosed diabetic subjects.  J Assoc Physicians India. 2005;  53 759-763
  • 46 Tabaei BP, Engelgau MM, Herman WH. A multivariate logistic regression equation to screen for dysglycaemia: development and validation.  Diabet Med. 2005;  22 599-605
  • 47 Saydah SH, Byrd-Holt D, Harris MI. Projected impact of implementing the results of the diabetes prevention program in the U.S. population.  Diabetes Care. 2002;  25 1940-1945
  • 48 Al-Lawati JA, Tuomilehto J. Diabetes risk score in Oman: a tool to identify prevalent type 2 diabetes among Arabs of the Middle East.  Diabetes Res Clin Pract. 2007;  77 438-444
  • 49 Ruige JB, Neeling JN de, Kostense PJ, Bouter LM, Heine RJ. Performance of an NIDDM screening questionnaire based on symptoms and risk factors.  Diabetes Care. 1997;  20 491-496
  • 50 Baan CA, Ruige JB, Stolk RP, Witteman JC, Dekker JM, Heine RJ, Feskens EJ. Performance of a predictive model to identify undiagnosed diabetes in a health care setting.  Diabetes care. 1999;  22 213-219
  • 51 Kanaya AM, Wassel Fyr CL, Rekeneire N de, Shorr RI, Schwartz AV, Goodpaster BH, Newman AB, Harris T, Barrett-Connor E. Predicting the development of diabetes in older adults: the derivation and validation of a prediction rule.  Diabetes care. 2005;  28 404-408
  • 52 Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study.  Circulation. 2002;  105 310-315
  • 53 Schwarz PE, Li J, Wegner H, Bornstein SR, Lindstrom J, Tuomilehto J. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes: response to Schulze et al.  Diabetes Care. 2007;  30 e87 , authors’ reply e88
  • 54 American Diabetes Association . Diagnosis and classification of diabetes mellitus.  Diabetes Care. 2007;  30 ((Suppl 1)) S42-S47
  • 55 Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c).  Diabetes Care. 2003;  26 881-885
  • 56 Perry RC, Shankar RR, Fineberg N, MacGill J, Baron AD. HbA1c measurement improves the detection of type 2 diabetes in high-risk individuals with nondiagnostic levels of fasting plasma glucose: the Early Diabetes Intervention Program (EDIP).  Diabetes Care. 2001;  24 465-471
  • 57 World Health Organization .Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation. Geneva 1999
  • 58 Ryden L, Standl E, Bartnik M, Berghe G Van den, Betteridge J, Boer MJ de, Cosentino F, Jonsson B, Laakso M, Malmberg K, Priori S, Ostergren J, Tuomilehto J, Thrainsdottir I, Vanhorebeek I, Stramba-Badiale M, Lindgren P, Qiao Q, Priori SG, Blanc JJ, Budaj A, Camm J, Dean V, Deckers J, Dickstein K, Lekakis J, MacGregor K, Metra M, Morais J, Osterspey A, Tamargo J, Zamorano JL, Deckers JW, Bertrand M, Charbonnel B, Erdmann E, Ferrannini E, Flyvbjerg A, Gohlke H, Juanatey JR, Graham I, Monteiro PF, Parhofer K, Pyorala K, Raz I, Schernthaner G, Volpe M, Wood D. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD).  Eur Heart J. 2007;  28 88-136
  • 59 Unwin N, Shaw J, Zimmet P, Alberti KG. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention.  Diabet Med. 2002;  19 708-723
  • 60 Barrett-Connor E. The oral glucose tolerance test, revisited.  Eur Heart J. 2002;  23 1229-1231
  • 61 Nelson KM, Boyko EJ. Predicting impaired glucose tolerance using common clinical information: data from the Third National Health and Nutrition Examination Survey.  Diabetes Care. 2003;  26 2058-2062
  • 62 Schackert G, Fidler IJ. Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals.  Cancer Res. 1988;  48 3478-3484
  • 63 Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, Yipintsoi T, Rajatanavin R. A risk score for predicting incident diabetes in the Thai population.  Diabetes Care. 2006;  29 1872-1877
  • 64 Shen H, Yu S, Xu Y. The use of risk factors scoring method in screening for undiagnosed diabetes in general population.  Zhonghua Liu Xing Bing Xue Za Zhi. 1999;  20 114-117
  • 65 Glucose tolerance and cardiovascular mortality: . comparison of fasting and 2-h diagnostic criteria.  Arch Intern Med. 2001;  161 397-405
  • 66 American Diabetes Association . American diabetes alert.  Diabetes Forecast. 1993;  46 54
  • 67 Burden ML, Burden AC. The American Diabetes Association screening questionnaire for diabetes. Is it worthwhile in the U.K.?  Diabetes care. 1994;  17 97
  • 68 Newman JM, Herman WH, Vinicor F. Alternative approaches to public health surveillance of IDDM.  Diabetes Care. 1993;  16 812-814
  • 69 Tuomilehto J. Diabetes risk score for diabetes prevention. In: Schwarz PE, ed. Dresden http://www.tumaini.de 2002
  • 70 Rathmann W, Martin S, Haastert B, Icks A, Holle R, Lowel H, Giani G. Performance of screening questionnaires and risk scores for undiagnosed diabetes: the KORA Survey 2000.  Arch Intern Med. 2005;  165 436-441
  • 71 Saaristo T, Peltonen M, Lindstrom J, Saarikoski L, Sundvall J, Eriksson JG, Tuomilehto J. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome.  Diab Vasc Dis Res. 2005;  2 67-72
  • 72 Franciosi M, Berardis G De, Rossi MC, Sacco M, Belfiglio M, Pellegrini F, Tognoni G, Valentini M, Nicolucci A. Use of the diabetes risk score for opportunistic screening of undiagnosed diabetes and impaired glucose tolerance: the IGLOO (Impaired Glucose Tolerance and Long-Term Outcomes Observational) study.  Diabetes Care. 2005;  28 1187-1194
  • 73 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.  Lancet. 2002;  359 ((9323)) 2072-2077
  • 74 Chiasson JL, Gomis R, Hanefeld M, Josse RG, Karasik A, Laakso M. The STOP-NIDDM Trial: an international study on the efficacy of an alpha-glucosidase inhibitor to prevent type 2 diabetes in a population with impaired glucose tolerance: rationale, design, and preliminary screening data. Study to Prevent Non-Insulin-Dependent Diabetes Mellitus.  Diabetes Care. 1998;  21 1720-1725
  • 75 Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino Sr RB. Prediction of Incident Diabetes Mellitus in Middle-aged Adults: The Framingham Offspring Study.  Arch Intern Med. 2007;  167 1068-1074
  • 76 Lyssenko V, Almgren P, Anevski D, Orho-Melander M, Sjogren M, Saloranta C, Tuomi T, Groop L. Genetic prediction of future type 2 diabetes.  PLoS Med. 2005;  2 e345
  • 77 Li J, Bergmann A, Reimann M, Schulze J, Bornstein SR, Schwarz PE. Genetic variation of neurogenin 3 is slightly associated with hyperproinsulinaemia and progression toward type 2 diabetes.  Exp Clin Endocrinol Diabetes. 2008;  116 178-183
  • 78 Icks A, Rathmann W, Haastert B, John J, Lowel H, Holle R, Giani G. Cost-effectiveness of type 2 diabetes screening: results from recently published studies.  Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)). 2005;  67 ((Suppl 1)) S167-S171
  • 79 Zhang P, Engelgau MM, Valdez R, Benjamin SM, Cadwell B, Narayan KM. Costs of screening for pre-diabetes among US adults: a comparison of different screening strategies.  Diabetes Care. 2003;  26 2536-2542
  • 80 , Screening for Type 2 Diabetes: Report of a World Health Organization and International Diabetes Federation Meeting, 2003
  • 81 Reimann M, Schutte AE, Schwarz PE. Insulin resistance – the role of ethnicity: evidence from Caucasian and African cohorts.  Horm Metab Res. 2007;  39 853-857
  • 82 Bergmann A, Li J, Wang L, Schulze J, Bornstein SR, Schwarz PE. A simplified finnish diabetes risk score to predict type 2 diabetes risk and disease evolution in a german population.  Horm Metab Res. 2007;  39 677-682
  • 83 Balkau B, Lange C, Fezeu L, Tichet J, Lauzon-Guillain B de, Czernichow S, Fumeron F, Froguel P, Vaxillaire M, Cauchi S, Ducimetiere P, Eschwege E. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR).  Diabetes Care. 2008;  31 2056-2061
  • 84 Lindstrom J, Peltonen M, Eriksson JG, Aunola S, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Uusitupa M, Tuomilehto J. Determinants for the effectiveness of lifestyle intervention in the Finnish Diabetes Prevention Study.  Diabetes Care. 2008;  31 857-862
  • 85 Silventoinen K, Pankow J, Lindstrom J, Jousilahti P, Hu G, Tuomilehto J. The validity of the Finnish Diabetes Risk Score for the prediction of the incidence of coronary heart disease and stroke, and total mortality.  Eur J Cardiovasc Prev Rehabil. 2005;  12 451-458
  • 86 Schwarz PEH, Li J, Reimann M, Schutte AE, Bergmann A, Hanefeld M, Bornstein SR, Schulze J, Lindstrom J, Tuomilehto J. The Finnish Diabetes Risk Score (FINDRISC) is associated with Insulin Resistance and Progression towards Type 2 Diabetes. 2007;  , Manuscript submitted ICEM
  • 87 Schwarz PE, Muylle F, Valensi P, Hall M. The European perspective of diabetes prevention.  Horm Metab Res. 2008;  40 511-514
  • 88 Schwarz PE, Lindstrom J, Kissimova-Scarbeck K, Szybinski Z, Barengo NC, Peltonen M, Tuomilehto J. The European perspective of type 2 diabetes prevention: diabetes in Europe – prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project.  Exp Clin Endocrinol Diabetes. 2008;  116 167-172
  • 89 Schwarz PE, Gruhl U, Bornstein SR, Landgraf R, Hall M, Tuomilehto J. The European Perspective on Diabetes Prevention: development and Implementation of A European Guideline and training standards for diabetes prevention (IMAGE).  Diab Vasc Dis Res. 2007;  4 353-357
  • 90 Schutte AE, Huisman HW, Rooyen JM Van, Schutte R, Malan L, Reimann M, Ridder JH De, Merwe A van der, Schwarz PE, Malan NT. Should obesity be blamed for the high prevalence rates of hypertension in black South African women?.  J Hum Hypertens. 2008;  22 528-536
  • 91 Tselmin S, Schwarz PE, Bergmann A, Bornstein S, Bergmann S. High prevalence of dyslipidemia in the dresden jewish population.  Horm Metab Res. 2007;  39 700-701
  • 92 Schwarz PE, Schwarz J, Schuppenies A, Bornstein SR, Schulze J. Development of a diabetes prevention management program for clinical practice.  Public Health Rep. 2007;  122 258-263
  • 93 Gundersen K, Yerganian G, Lin BJ, Gagnon H, Bell F, MacRae W, Onsberg T. Diabetes in the Chinese hamster. Some clinical and metabolic aspects.  Diabetologia. 1967;  3 85-91
  • 94 Schwarz PE, Schwarz J, Bornstein SR, Schulze J. Diabetes prevention–from physiology to implementation.  Horm Metab Res. 2006;  38 460-464
  • 95 Kaline K, Bornstein SR, Bergmann A, Hauner H, Schwarz PE. The importance and effect of dietary fiber in diabetes prevention with particular consideration of whole grain products.  Horm Metab Res. 2007;  39 687-693
  • 96 Schwarz P. Targeted diabetes prevention in high risk groups: pro.  Dtsch Med Wochenschr. 2005;  130 1103
  • 97 International Diabetes Federation . Global guideline for type 2 diabetes.  Accessed Nov. 2006; 
  • 98 Yamaoka K, Tango T. Efficacy of lifestyle education to prevent type 2 diabetes: a meta-analysis of randomized controlled trials.  Diabetes Care. 2005;  28 2780-2786
  • 99 Group DPPR . Within-trial cost-effectiveness of lifestyle intervention or metformin for the primary prevention of type 2 diabetes.  Diabetes Care. 2003;  26 2518-2523
  • 100 Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the preven-tion of type 2 diabetes in obese patients.  Diabetes Care. 2004;  27 155-161
  • 101 Mertes G. Safety and efficacy of acarbose in the treatment of Type 2 diabetes: data from a 5-year surveillance study.  Diabetes Res Clin Pract. 2001;  52 193-204
  • 102 Alberti KG, Zimmet P, Shaw J. International Diabetes Federation: a consensus on Type 2 diabetes prevention.  Diabet Med. 2007;  24 451-463

Correspondence

Dr. P. E. H. Schwarz

Department of Medicine

Carl Gustav Carus

Technical University Dresden

Fetscherstraße 74

01307 Dresden

Germany

Telefon: +49/351/458 27 15

Fax: +49/351/458 73 19

eMail: peter.schwarz@uniklinikumdresden. de