Synlett 2008(20): 3145-3148  
DOI: 10.1055/s-0028-1087243
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Gewald Synthesis of Aminothiophene Carboxylic Acids Providing New Dipeptide Analogues

Hülya Özbek, Ivana S. Veljkovic, Hans-Ulrich Reissig*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Fax: +49(30)83855367; e-Mail: hans.reissig@chemie.fu-berlin.de;
Further Information

Publication History

Received 29 August 2008
Publication Date:
24 November 2008 (online)

Abstract

A new multicomponent synthesis of 2-aminothiophene carbocyclic acids 4 by reaction of methyl 2-siloxycyclopropane-carboxylates 1, alkyl cyanoacetates, and elemental sulfur is reported. This version of the Gewald thiophene synthesis rapidly provides a new type of δ-amino acids, which can be considered as dipeptide analogues. Smooth protective-group manipulations allowed regio- and chemoselective couplings with l-phenylalanine derivatives furnishing new tripeptide analogues such as 5 and 8 or products of type 10.

    References and Notes

  • 1 Gewald K. Schinke E. Böttcher H. Chem. Ber.  1966,  99:  94 
  • For a review on the synthesis of 2-aminothiophenes by Gewald reaction, see:
  • 2a Sabnis RW. Rangnekar DW. Sonawane ND. J. Heterocycl. Chem.  1999,  36:  333 
  • For a review on multicomponent reactions of carbonyl compounds and derivatives of cyanoacetic acid, see:
  • 2b Shestopalov AM. Shestopalov AA. Rodinovskaya LA. Synthesis  2008,  1 
  • 3 Maradiya HR. Turk. J. Chem.  2001,  25:  441 
  • 4a LaPorte MG. Lessen TA. Leister L. Cebzanov D. Amparo E. Faust C. Ortlip D. Bailey TR. Nitz TJ. Chunduru SK. Young DC. Burns CJ. Bioorg. Med. Chem. Lett.  2006,  16:  100 
  • 4b Gütschow M. Kuerschner L. Neumann U. Pietsch M. Löser R. Koglin N. Eger K. J. Med. Chem.  1999,  42:  5437 
  • 5 Koike K. Jia Z. Nikaido T. Liu Y. Zhao Y. Guo D. Org. Lett.  1999,  1:  197 
  • 6a Bonauer C. Zabel M. König B. Org. Lett.  2004,  6:  1349 
  • 6b Gervay J. Ramamoorthy PS. Mamuya NN. Tetrahedron  1997,  53:  11039 
  • 6c Gervay J. Flaherty TM. Nguyen C. Tetrahedron Lett.  1997,  38:  1493 
  • 6d Baldauf C. Günther R. Hofmann H.-J. J. Org. Chem.  2004,  69:  6214 
  • 6e Sünnemann HW. Hofmeister A. Magull J. de Meijere A. Chem. Eur. J.  2006,  12:  8336 
  • 7a Kunkel E. Reichelt I. Reissig H.-U. Liebigs Ann. Chem.  1984,  512 
  • For reviews of donor-acceptor-substituted cyclopropanes, see:
  • 7b Reissig H.-U. Top. Curr. Chem.  1988,  144:  73 
  • 7c Reissig H.-U. Zimmer R. Chem. Rev.  2003,  103:  1151 
  • 8a Reichelt I. Reissig H.-U. Synthesis  1984,  786 
  • 8b Grimm EL. Reissig H.-U. J. Org. Chem.  1985,  50:  242 
  • 8c Grimm EL. Zschiesche R. Reissig H.-U. J. Org. Chem.  1985,  50:  5543 
  • 8d Ullmann A. Schnaubelt J. Reissig H.-U. Synthesis  1998,  1052 
  • 8e Zimmer R. Ziemer A. Gruner M. Brüdgam I. Hartl H. Reissig H.-U. Synthesis  2001,  1649 
  • 8f Patra PK. Reissig H.-U. Eur. J. Org. Chem.  2001,  4195 
  • 8g Veljkovic I. Zimmer R. Reissig H.-U. Brüdgam I. Hartl H. Synthesis  2006,  2677 
  • 11 Reichelt I. Reissig H.-U. Liebigs Ann. Chem.  1984,  531 
  • 12a For a review on recent development of peptide coupling reagents in organic synthesis, see: Han S.-Y. Kim Y.-A. Tetrahedron  2004,  60:  2447 
  • 12b For a review on chemical synthesis of natural product peptides, see: Humphrey JM. Chamberlin AR. Chem. Rev.  1997,  97:  2243 
  • 13 Greene TW. Wuts PGM. Protecting Groups in Organic Synthesis   4th ed.:  Wiley; New York: 2006. 
  • 15 Knölker H.-J. Braxmeier T. Tetrahedron Lett.  1996,  37:  5861 
  • 16 Kruse CH. Holden KG. J. Org. Chem.  1985,  50:  2792 
  • 17 Carpino LA. Han GY. J. Org. Chem.  1972,  37:  3404 
  • 18 Burke TR. Ye B. Akamatsu M. Ford H. Yan X. Kole HK. Wolf G. Shoelson SE. Roller PP. J. Med. Chem.  1996,  39:  1021 
  • 19 Mehta A. Jaouhari R. Benson TJ. Douglas KT. Tetrahedron Lett.  1992,  33:  5441 
  • For reviews, see:
  • 20a Hirschmann R. Angew. Chem. Int. Ed. Engl.  1991,  30:  1278 ; Angew. Chem. 1991, 103, 1305
  • 20b Giannis A. Kolter T. Angew. Chem. Int. Ed. Engl.  1993,  32:  1244 ; Angew. Chem. 1993, 105, 1303
9

Typical Procedure for the Synthesis of 2-Aminothio-phene 4a Using the One-Pot/One-Stage Procedure
Siloxycyclopropanecarboxylate 1a (0.209 g, 1.06 mmol), tert-butyl cyanoacetate (0.143 g, 1.01 mmol) and sulfur (0.032 g, 1.01 mmol) were suspended in MeOH (2 mL), then Et2NH (0.11 mL, 1.01 mmol) was added. The mixture was refluxed for 7 h, and then stirred overnight at r.t. After addition of water and EtOAc the layers were separated and the aqueous layer was extracted two times with EtOAc. The combined organic layers were dried with Na2SO4, filtered, and concentrated. Column chromatography (SiO2, hexane-EtOAc = 8:1 to 7:1 to 6:1) provided 0.180 g (66%) 4a as a brownish oil.
Analytical Data for tert -Butyl 2-Amino-5-(2-methoxy-2-oxoethyl)thiophene-3-carboxylate (4a)
¹H NMR (500 MHz, CDCl3): δ = 1.50 [s, 9 H, C(CH3)3], 3.56 (s, 2 H, CH2), 3.68 (s, 3 H, OCH3), 5.90 (br s, 2 H, NH2), 6.70 (s, 1 H, CH). ¹³C NMR (126 MHz, CDCl3): δ = 28.3 [q, C(CH3)3], 35.0 (t, CH2), 52.1 (q, OCH3), 79.9 [s, C(CH3)3], 107.6 (s, C-2), 115.4 (s, C-5), 125.4 (d, C-4), 162.0 (s, C-3), 164.7, 170.9 (2 s, CO). IR (film): 3445-3255 (NH), 3070-2845 (CH), 1740, 1670 (C=O), 1590, 1500, 1455 (NH, CSNH) cm. MS (EI, 80 eV, 60 ˚C): m/z (%) = 271 (14) [M]+, 215 (59) [M - C4H9]+, 197 (33) [M - C5H12]+, 156 (100) [M - C5H12O2]+, 138 (61), 57 (37) [C4H9]+. HRMS (EI, 80 eV, 60 ˚C): m/z calcd for C12H17NO4S: 271.0878; found: 271.0880. Anal. calcd for C12H17NO4S (271.3): C, 53.12; H, 6.32; N, 5.16; S, 11.82. Found: C, 53.37; H, 6.43; N, 5.16; S, 11.95.

10

We also prepared thiophene 4a in 61% yield starting from commercially available aldehyde 2a using a one-pot/one-stage Gewald procedure (method A). Although the result is comparable with the yield we achieved with cyclopropane 1a the very high cost of aldehyde 2a (100 mg, 77 ı) is almost prohibitive for large-scale preparations of 4a.

14

Alternatively, 7c was synthesized in 59% overall yield by a reversed reaction sequence.

21

During peptide couplings presented here we did not observe racemization of the amino acid moiety since subsequent couplings with a second amino acid provided only one diastereomer.