Subscribe to RSS
DOI: 10.1055/s-0028-1087343
Synthesis of Chiral Carbohydrate Ionic Liquids
Publication History
Publication Date:
12 November 2008 (online)
Abstract
Chiral room temperature ionic liquids, containing a carbohydrate moiety linked at the anomeric centre to an N-methylimidazolium group have been synthesised. The ionic liquids were prepared in a concise manner and provided ready access to both the d- and l-arabino enantiomers. The same strategy enabled the preparation of d-ribofuranose and d-xylofuranose analogues, in excellent yields.
Keywords
synthesis - chiral ionic liquid - carbohydrate - N-methylimidazolium
-
1a
Boon JA.Levisky JA.Pflug JL.Wilkes JS.
J. Org. Chem. 1986, 51: 480 -
1b
Welton T. Chem. Rev. 1999, 99: 2071 -
2a
Wasserscheid P.Welton T. Ionic Liquids in Synthesis Wiley-VCH; Weinheim: 2003. -
2b
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772 -
2c
Sheldon RA. Chem. Commun. 2001, 2399 -
2d
Handy ST.Okello M. Tetrahedron Lett. 2003, 45: 8399 -
2e
Xu X.Kotti SRSS.Liu J.Cannon JF.Headley AD.Li G. Org. Lett. 2004, 6: 4881 -
2f
Xiao J.-C.Shreeve JM.
J. Org. Chem. 2005, 70: 3072 - For recent reviews, see:
-
3a
Baudequin C.Baudoux J.Levillain J.Cahard D.Gaumont AC.Plaqueventa J.-C. Tetrahedron: Asymmetry 2003, 14: 3081 -
3b
Xue H.Verma R.Shreeve JM. J. Fluorine Chem. 2006, 127: 159 -
3c
Singh RP.Verma RD.Meshri DT.Shreeve JM. Angew. Chem. Int. Ed. 2006, 45: 3584 -
3d
Hagiwara R.Lee JS. Electrochemistry 2007, 75: 23 -
3e
Parvulescu VI.Hardacre C. Chem. Rev. 2007, 107: 2615 -
3f
van Rantwijk F.Sheldon RA. Chem. Rev. 2007, 107: 2757 -
3g
Winkel A.Reddy PVG.Wilhelm R. Synthesis 2008, 999 -
3h
Headley AD.Ni B. Aldrichimica Acta 2007, 40: 107 -
4a
Huddleston JG.Willauer HD.Swatloski RP.Visser AE.Rogers RD. Chem. Commun. 1998, 16: 1765 -
4b
Armstrong DW.He L.Liu Y.-S. Anal. Chem. 1999, 71: 3873 -
4c
Huddleston JG.Visser AE.Reichert WM.Willauer HD.Broker GA.Rogers RD. Green Chem. 2001, 3: 156 -
4d
Liu J.-F.Jiang G.-B.Chi Y.-G.Cai Y.-Q.Zhou Q.-X.Hu J.-T. Anal. Chem. 2003, 75: 5870 - 5
Handy ST. Curr. Org. Chem. 2005, 9: 959 -
6a
Welton T. Coord. Chem. Rev. 2004, 248: 2459 -
6b
Lee S. Chem. Commun. 2006, 1049 - 7
Baudequin C.Bregeon D.Levillain J.Guillen F.Plaquevent J.-C.Gaumont A.-C. Tetrahedron: Asymmetry 2005, 16: 3921 -
8a
Earle MJ.McCormac PB.Seddon KR. Green Chem. 1999, 1: 23 -
8b
Wang Z.Wang Q.Zhang Y.Bao W. Tetrahedron 2005, 46: 4657 -
8c
Carda-Broch S.Berthod A.Armstrong DW. Anal. Bioanal. Chem. 2003, 375: 191 -
9a
Baudoux J.Judeinstein P.Cahard D.Plaquevert J.-C. Tetrahedron Lett. 2005, 46: 1137 -
9b
Fringuelli F.Pizzo F.Tortoioli S.Vaccaro L. J. Org. Chem. 2004, 69: 7745 -
9c
Tosoni M.Laschat S.Bato A. Helv. Chim. Acta 2004, 87: 2742 - 10
Baudequin C.Baudoux J.Levillain J.Cahard D.Gaumont AC.Plaqueventa J.-C. Tetrahedron: Asymmetry 2003, 14: 3081 - 11
Levillian J.Dubant G.Abrunhosa I.Gulea M.Gaumont AC. Chem. Commun. 2003, 2914 - 12
Pernak J.Feder-Kubis J. Chem. Eur. J. 2005, 11: 4441 -
13a
Génisson Y.Lauthde Viguerie N.André C.Baltas M.Gorrichon L. Tetrahedron: Asymmetry 2005, 16: 1017 -
13b
Ding J.Desikan V.Han X.Xiao TL.Ding R.Jenks WS.Armstrong DW. Org. Lett. 2005, 7: 335 -
13c
Jodry JJ.Mikami K. Tetrahedron Lett. 2004, 45: 4429 -
13d
Bao W.Wang Z.Li Y. J. Org. Chem. 2003, 68: 591 -
13e
Guillen F.Brégeon D.Plaquevent J.-C. Tetrahedron Lett. 2006, 47: 1245 -
13f
Ni B.Headley AD. Tetrahedron Lett. 2006, 47: 7331 - 14
Brown T.Kadir K.Mackenzie G.Shaw G. J. Chem. Soc., Perkin Trans. 1 1979, 3107 -
15a
Barker R.Fletcher HG. J. Org. Chem. 1961, 26: 4605 -
15b
Austin PW.Hardy FE.Buchanan JG.Baddiley J. J. Chem. Soc. 1964, 2128 -
15c
Finch P.Iskander GM.Siriwardena AH. Carbohydr. Res. 1991, 210: 319 -
15d
Tejima S.Fletcher HG. J. Org. Chem. 1963, 28: 2999 -
15e
Kawana M.Kuzuhara H.Emoto S. Bull. Chem. Soc. Jpn. 1981, 54: 1492 - 16
Yuan L.Singh G. Tetrahedron Lett. 2001, 42: 6615 - 19
Cicchillo RM.Norris P. Carbohydr. Res. 2000, 328: 431
References and Notes
Selected Data
Compound 14 (X = Cl): [α]D
²8 +28
(c 1.1, CHCl3). IR (film): νmax = 3429,
3143, 3064, 3032, 2923, 2870, 1634, 1578, 1556, 1454, 1364, 1264,
1157, 1090, 1030, 748, 701, 638 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 3.60 (3 H,
s), 3.62
(1 H, dd, J = 2.8,
10.9 Hz), 3.82 (1 H, dd, J = 3.0,
10.9 Hz), 4.13 (1 H, m), 4.23 (1 H, t, J = 6.8
Hz), 4.41 (1 H, d, J = 11.1 Hz),
4.48 (1 H, d, J = 11.1
Hz), 4.53 (1 H, d, J = 11.9
Hz), 4.64 (2 H, d, J = 6.3Hz),
4.57 (1 H, m), 4.69 (1 H, d, J = 11.9 Hz),
6.46 (1 H, d, J = 5.8
Hz), 7.22-7.40 (16 H, m), 7.73
(1 H, m), 9.40
(1 H, s) ppm. ¹³C NMR (100 MHz, CDCl3):
δ = 36.0,
68.0, 72.5, 73.5, 78.2, 81.0, 82.6, 87.3, 121.5, 122.5, 128.1, 127.9,
128.1, 128.2, 128.3, 128.5, 128.6, 135.5, 136.4, 137.1, 137.2 ppm.
ESI-MS: m/z calcd C30H33N2O4:
485.2435; found: 485.2423. Glass-transition temperature: 18 ˚C.
Compound 15 (X = PF6
-): [α]D
²8 +14
(c 1.1, CHCl3). ¹H NMR
(400 MHz, CDCl3): δ = 3.41 (3 H, s),
3.57 (1 H, dd, J = 3.2,
10.9 Hz), 3.75 (1 H, dd, J = 3.3,
10.8 Hz), 4.09 (1 H, m), 4.17 (1 H, t, J = 6.7
Hz), 4.37 (1 H, d, J = 10.8
Hz), 4.43-4.50 (5 H, m), 4.62 (1 H, d, J = 11.8
Hz), 6.05 (1 H, d, J = 5.6 Hz),
7.05 (1 H, t, J = 1.7
Hz), 7.15-7.36 (15 H, m), 7.39
(1 H, t, J = 1.7 Hz),
8.56 (1 H, br s) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 35.9, 68.2, 73.3, 73.4,
73.5, 78.6, 81.3, 82.3, 87.4, 121.3, 122.7, 127.7, 127.9, 128.0,
128.1, 128.2, 128.3, 128.5, 128.6, 134.9, 136.2, 137.1, 137.2 ppm. ³¹P NMR
(160 Hz, CDCl3): δ = -142.9
(sept., J = 712.7
Hz) ppm. Glass-transition temperature -23 ˚C.
Compound 16: [α]D
²8 +9.5
(c 1.05, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.48 (3 H,
s, NCH3), 3.59 (1 H, dd, J = 3.2,
10.9 Hz), 3.76 (1 H, dd, J = 3.2,
10.9 Hz, H-5, H-5′), 4.09 (1 H, m, H-4), 4.18 (1 H, t, J = 6.4 Hz,
H-3), 4.38 (1 H, d, J = 11.0
Hz), 4.45 (1 H, d, J = 11.0
Hz), 4.46-4.53 (4 H, H-2), 4.61 (1 H, d, J = 11.8
Hz), 6.22 (1 H, d, J = 5.5
Hz), 7.16-7.36 (16 H), 7.53 (1 H, t, J = 1.7
Hz,), 8.75 (1 H, br s) ppm. ¹³C (100
MHz, CDCl3): 35.7, 67.9, 72.2, 73.1, 75.0, 78.3, 80.9,
82.1, 87.1, 121.1, 122.1, 127.4-128.4, 134.9, 136.3, 137.0,
137.1 ppm. ¹9F (376.5 MHz, CDCl3): -151.0 ppm.
Glass-transition temperature -36 ˚C.
Compound 19: [α]D
²8 +22.3
(c 1.3, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.46 (1 H,
dd, J = 3.2,
10.6 Hz), 3.52
(1 H, dd, J = 3.5,
10.6 Hz), 3.77 (3 H, s), 4.01 (1 H, dd, J = 1.8,
5.1 Hz), 4.41-4.62 (8 H, m), 6.25 (1 H, d, J = 5.8 Hz),
7.19-7.36 (16 H, m), 7.54 (1 H, s), 9.28 (1 H, s) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 36.0, 69.7,
72.5, 73.3, 73.4, 76.4, 76.9, 77.3, 78.1, 84.7, 87.9, 121.6, 122.1,
127.6, 127.8, 127.9, 128.0, 128.1, 128.3, 128.4, 136.5, 136.8, 137.3 ppm.
Glass-transition temperature 16 ˚C.
Compound 22: ¹H NMR (400 MHz,
CDCl3): δ = 3.67-3.76 (2 H,
m), 3.93 (3 H, s), 4.05 (1 H, m), 4.22 (1 H, t, J = 5.3 Hz),
4.35-4.46 (3 H, m), 4.51 (1 H, d, J = 11.9
Hz), 4.59
(1 H, d, J = 11.9
Hz), 4.62-4.69 (2 H, m), 6.30 (1 H, d, J = 3.7
Hz), 7.08 (1 H, br s), 7.11-7.36 (15 H, m), 7.39 (1 H, br
s), 9.26 (1 H, br s) ppm. ¹³C (100
MHz, CDCl3): δ = 36.3, 68.7, 72.5,
73.3, 75.0, 75.3, 78.0, 82.1, 85.0, 121.1, 122.1, 127.7, 128.5,
135.1, 137.3, 137.7, 137.8, 137.9 ppm.
Compound 23: ¹H NMR (400 MHz,
CDCl3): δ = 3.42 (3 H, s), 3.63 (1
H, dd, J = 2.1,
11.0 Hz), 3.89 (1 H, dd, J = 2.5, 11.0
Hz), 4.12 (1 H, m), 4.20 (1 H, t, J = 7.7
Hz), 4.38 (1 H, d, J = 10.5
Hz), 4.47 (1 H, d, J = 10.5
Hz), 4.60 (1 H, d, J = 11.9
Hz), 4.75 (1 H, dd, J = 5.8,
7.2 Hz), 4.85 (1 H, d, J = 11.9
Hz), 6.02 (1 H, d, J = 5.7
Hz), 7.06 (1 H, br s), 7.23-7.39 (10 H, m), 7.69 (1 H,
br s), 8.96 (1 H, br s) ppm. ¹³C NMR
(100 MHz, CDCl3): δ = 36.1, 68.0, 72.6,
73.5, 78.1, 80.9, 82.6, 87.3, 121.6, 122.4, 127.7, 128.5, 135.8,
136.5, 137.2, 137.3.
General Procedure
The
2,3,5-tri-O-benzylsugar (1 mmol) was
dissolved in dry CH2Cl2 (10 mL) and cooled
to 0 ˚C under Ar atmosphere. Propane-1,3-diyldioxyphosphoryl
chloride (2 mmol) was added, followed by 1-methylimidazole (2.5
mmol). The mixture was allowed to warm up to r.t. and stirred overnight (16
h). The reaction was then quenched with sat. NaHCO3 (10
mL) and the organic layer washed with H2O (2 × 10
mL) and dried (Na2SO4). The solvent was then
removed in vacuo to give the crude sugar phosphate, which was re-dissolved
in dry CH2Cl2 (10 mL) under an Ar atmosphere
and cooled to -78 ˚C. trimethylsilyl
triflate (cat.) was added and the mixture stirred for 2 min. 1-Methylimidazole
hydrochloride (2 mmol) was then added. The reaction mixture was
allowed to warm up to r.t. and stirred until TLC (CHCl3-MeOH, 80:20)
showed the reaction had gone to completion (4 h). The mixture was
then diluted with CH2Cl2 (10 mL) and washed
with sat. aq NaHCO3 (2 × 20
mL) and H2O (2 × 20 mL). The
organic layer was dried (Na2SO4) and concentrated in
vacuo to give a crude product, that was further purified by column
chromatography (CHCl3-MeOH, 80:20).
Silver
nitrate test for ionic liquids with anions other than chloride,
derived via metathesis: The ionic liquid (1 mg) is dissolved in
MeOH-deionized H2O (1:1; 1 mL). The resulting
solution is tested with 0.1 M AgNO3 (2 drops). No precipitation
was observed in BF4 and PF6 ionic liquids.