RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087370
Highly Enantioselective Michael Addition of Malonates to Nitroolefins Catalyzed by Chiral Bifunctional Tertiary Amine-Thioureas Based on Saccharides
Publikationsverlauf
Publikationsdatum:
26. November 2008 (online)
Abstract
A series of saccharide-derived bifunctional tertiary amine-thioureas for the asymmetric Michael addition reaction have been designed and synthesized. The addition products between malonates and various nitroolefins were obtained in high yields (up to 99%) and excellent enantioselectivities (up to 99% ee).
Key words
asymmetric catalysis - Michael addition - nitroolefins - bifunctional thiourea - saccharides
- Supporting Information for this article is available online:
- Supporting Information
- For reviews of asymmetric Michael addition reactions, see:
-
1a
Tomioka K.Nagaoka Y.Yamaguchi M. Comprehensive Asymmetric Catalysis Vol. 3:Jacobsen EN.
Pfaltz A.Yamamoto H. Springer; New York: 1999. Chap. 31.1 and 31.2. p.1105-1139 -
1b
Krause N.Hoffmann-Röder A. Synthesis 2001, 171 -
1c
Christoffers J.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688 -
1d
Guo H.-C.Ma J.-A. Angew. Chem. Int. Ed. 2006, 45: 354 -
1e
Enders D.Grondal C.Hüttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 - For reviews on utility of nitro group, see:
-
2a
Seebach D.Colvin EW.Lehr F.Weller T. Chimia 1979, 33: 1 -
2b
Barrett AGM.Graboski GG. Chem. Rev. 1986, 86: 751 -
2c
Rosini G.Ballini R. Synthesis 1988, 833 -
2d
Tamura R.Kamimura A.Ono N. Synthesis 1991, 423 -
2e
Fuji K.Node M. Synlett 1991, 603 -
2f
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001. - For selected reviews regarding organocatalysis, see:
-
3a
List B. Acc. Chem. Res. 2004, 37: 548 -
3b
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
3c
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 -
3d
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719 -
3e
Duthaler RO. Angew. Chem. Int. Ed. 2003, 42: 975 - For a review on asymmetric Michael additions to nitroalkenes, see:
-
4a
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877 -
4b
Almasi D.Alonso DA.Najera C. Tetrahedron: Asymmetry 2007, 18: 299 -
4c
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 - For reviews concerning chiral bifunctional metal complexes as catalysts, see:
-
5a
Shibasaki M.Yoshikawa N. Chem. Rev. 2002, 102: 2187 -
5b
Ma J.-A.Cahard D. Angew. Chem. Int. Ed. 2004, 43: 4566 - For selected reviews concerning chiral bifunctional thiourea-based organocatalysis, see:
-
5c
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299 -
5d
Connon SJ. Chem. Eur. J. 2006, 12: 5418 -
5e
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 -
5f
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 -
5g
Connon SJ. Chem. Commun. 2008, 2499 - For selected examples on Jacobsen’s urea and thiourea catalysis, see:
-
6a
Sigman MS.Jacobsen EN. J. Am. Chem. Soc. 1998, 120: 4901 -
6b
Sigman MS.Vachal P.Jacobsen EN. Angew. Chem. Int. Ed. 2000, 39: 1279 -
6c
Vachal P.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 10012 -
6d
Taylor MS.Jacobsen EN. J. Am. Chem. Soc. 2004, 126: 10558 -
6e
Yoon TP.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 466 -
6f
Huang H.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170 -
6g
Lalonde MP.Chen Y.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 6366 - For selected examples on Takemoto’s thiourea catalysis, see:
-
7a
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 -
7b
Okino T.Nakamura S.Furukawa T.Takemoto Y. Org. Lett. 2004, 6: 625 -
7c
Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119 -
7d
Hoashi Y.Okino T.Takemoto Y. Angew. Chem. Int. Ed. 2005, 44: 4032 -
7e
Hoashi Y.Yabuta T.Yuan P.Miyabe H.Takemoto Y. Tetrahedron 2006, 62: 365 -
7f
Inokuma T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2006, 128: 9413 - For selected examples on other chiral thiourea-catalyzed Michael addition reactions, see:
-
8a
McCooey SH.Connon SJ. Angew. Chem. Int. Ed. 2005, 44: 6367 -
8b
Wang J.Li H.Duan W.Zu L.Wang W. Org. Lett. 2005, 7: 4713 -
8c
Ye J.Dixon DJ.Hynes PS. Chem. Commun. 2005, 4481 -
8d
McCooey SH.McCabe T.Connon SJ. J. Org. Chem. 2006, 71: 7494 -
8e
Tsogoeva SB.Wei S. Chem. Commun. 2006, 1451 -
8f
Yalalov DA.Tsogoeva SB.Schmatz S. Adv. Synth. Catal. 2006, 348: 826 -
8g
Cao C.-L.Ye M.-C.Sun X.-L.Tang Y. Org. Lett. 2006, 8: 2901 -
8h
Cao Y.-Y.Lu H.-H.Lai Y.-Y.Lu L.-Q.Xiao W.-J. Synthesis 2006, 3795 -
8i
Hynes PS.Stranges D.Stupple PA.Guarna A.Dixon DJ. Org. Lett. 2007, 9: 2107 -
8j
Cao Y.-J.Lai Y.-Y.Wang X.Li Y.-J.Xiao W.-J. Tetrahedron Lett. 2007, 48: 21 -
8k
Jiang L.Zheng H.-T.Liu T.-Y.Yue L.Chen Y.-C. Tetrahedron 2007, 63: 5123 -
8l
Wang C.-J.Zhang Z.-H.Dong X.-Q.Wu X.-J. Chem. Commun. 2008, 1431 -
8m
Hynes PS.Stupple PA.Dixon DJ. Org. Lett. 2008, 10: 1389 -
9a
List B.Pojarliev P.Martin HJ. Org. Lett. 2001, 3: 2423 -
9b
Enders D.Seki A. Synlett 2002, 26 -
10a
Herrman K.Wynberg H. J. Org. Chem. 1979, 44: 2238 -
10b
Colonna S.Re A.Wynberg H. J. Chem. Soc., Perkin Trans. 1 1981, 547 -
10c
Zhang F.-Y.Corey EJ. Org. Lett. 2000, 2: 1097 -
11a
Ma J.-A,Liu K,Cui H.-F,Nie J,Dong K.-Y, andLi X.-J. inventors; CN Patent 1974009. -
11b
Liu K.Cui H.-F.Nie J.Dong K.-Y.Li X.-J.Ma J.-A. Org. Lett. 2007, 9: 923 - 12 During the preparation of this manuscript,
similar organocatalysts were published by Zhou’s group:
Wang C.Zhou Z.Tang C. Org. Lett. 2008, 10: 1707 - 13
Evans DA.Mito S.Seidel D. J. Am. Chem. Soc. 2007, 129: 11583 - 14
Li X.-J.Zhang G.-W.Wang L.Hua M.-Q.Ma J.-A. Synlett 2008, 1255
References and Notes
A Typical Procedure
for the Preparation of Organocatalyst
To a solution
of 1, 2-cyclohexyldiamine (3.6 mmol) in CH2Cl2 (20
mL) was added the corresponding saccharide-derived isothiocyanates 1 (3 mmol). The mixture was stirred at
r.t. for 3-24 h (TLC) and concentrated. The resulting residue
was purified by flash column chromatography with the eluent (EtOAc-Et3N,
100:1) to give the crude solid. The crude solid was dissolved in
a minimal amount of CH2Cl2 and slowly precipitated
from solution by the addition of PE at 0 ˚C. Filtration
afforded the desired thiourea products 2.
Compound 2c: yield 55%; mp 90-92 ˚C; [α]D
²0 -0.5
(c 1.0, CH2Cl2). ¹H
NMR (500 MHz, CDCl3): δ = 0.94-1.26
(m,
5 H, cyclohexane-H), 1.66-1.88 (m, 3 H, cyclohexane-H), 1.99
(s, 3 H, COCH3), 2.01 (s, 3 H, COCH3), 2.03
(s, 3 H, COCH3), 2.05 (s, 3 H, COCH3), 2.24
(s, 6 H, 2 NCH3), 2.32 (m, 1 H, NCH), 3.45 (m, 1 H, NCH),
3.81-3.84 (m, 1 H, pyranose-H), 4.09-4.12 (m,
1 H, pyranose-H), 4.27-4.31 (m, 1 H, pyranose-H), 4.93-4.97
(t, 1 H, CH2), 5.05-5.09 (t, 1 H, CH2),
5.29-5.33 (m, 2 H, pyranose-H), 5.58-5.60 (br,
1
H, NH), 6.20 (br, 1 H, NH). ¹³C NMR
(125 MHz, CDCl3): δ = 170.85, 170.81,
170.07, 169.85, 83.30, 73.41, 73.5, 73.16, 71.22, 68.50, 61.88,
56.76, 40.46, 32.86, 24.96, 24.58, 22.76, 20.96, 20.94, 20.82, 20.81.
IR (KBr): 3352, 2936, 1753, 1542, 1377, 1225, 1035, 910, 758, 601cm-¹. ESI-MS: m/z = 532.26 [M+ + 1].
Compound 2d: yield 50%; mp 83-86 ˚C; [α]D
²0 +4.0
(c 1.0, CH2Cl2). ¹H
NMR (500 MHz, CDCl3): δ = 1.03-1.30
(m,
4 H, cyclohexane-H), 1.62-1.91 (m, 4 H, cyclohexane-H), 1.99
(s, 3 H, COCH3), 2.01 (s, 3 H, COCH3), 2.03
(s, 3 H, COCH3), 2.05 (s, 3 H, COCH3), 2.24
(s, 6 H, 2 NCH3), 2.33 (m, 1 H, NCH), 3.45 (m, 1 H, NCH),
3.81-3.84 (m, 1 H, pyranose-H), 4.09-4.12 (m,
1 H, pyranose-H), 4.27-4.32 (m, 1 H, pyranose-H), 4.91-4.99
(t, 1 H, CH2), 5.04-5.09 (t, 1 H, CH2),
5.30-5.33 (m, 2 H, pyranose-H), 5.58-5.60 (br,
1
H, NH), 6.20 (br, 1 H NH). ¹³C NMR
(125 MHz, CDCl3): δ = 170.86, 170.81,
170.07, 169.86, 83.30, 73.42, 73.16, 71.22, 68.50, 61.88, 56.76,
40.46, 32.86, 24.98, 24.58, 20.96, 20.94, 20.82, 20.81. IR (KBr):
3352, 2939, 1755, 1545, 1378, 1231, 1038, 907, 755, 602 cm-¹.
ESI-MS: m/z = 532.25 [M+ + 1].
Comound 2e: yield 30%; mp 94-97 ˚C; [α]D
²0 +63.0
(c 1.0, CH2Cl2). ¹H
NMR (500 MHz, CDCl3): δ = 1.15-1.29
(m,
5 H, cyclohexane-H), 1.64-1.84 (m, 3 H, cyclohexane-H), 1.96-2.01
(s, 12 H, 4 COCH3), 2.01-2.04 (s, 3 H, COCH3), 2.04-2.07
(s, 3 H, COCH3), 2.07-2.10 (s, 3 H, COCH3),
2.19 (s, 6 H, 2 NCH3), 2.24-2.38 (br, 1 H, NCH),
2.41-2.92 (br, 1 H, NCH), 3.76-3.82 (d, 1 H, OCH2, J = 7.0 Hz),
3.84-3.89 (d, 1 H, OCH2, J = 10.5
Hz), 3.98-4.04 (d, 2 H, OCH2, J = 8.0
Hz), 4.04-4.10 (m, 1 H, pyranose-H), 4.16-4.27
(m, 3 H, pyranose-H), 4.42-4.46 (d, 1 H, pyranose-H, J = 12.5 Hz),
4.74-4.82 (m, 2 H, pyranose-H), 5.00-5.07 (m,
1 H, pyranose-H), 5.28-5.42 (m, 2 H, pyranose-H). ¹³C
NMR (125 MHz, DMSO): δ = 171.00, 170.86, 170.72,
170.60, 170.04, 169.95, 169.65, 95.60, 82.72, 75.51, 73.77, 72.54, 71.86,
70.19, 69.44, 68.62, 68.13, 62.80, 61.55, 60.60, 56.70, 40.34, 32.76,
29.86, 29.53, 25.06, 24.57, 21.25, 21.08, 21.03, 20.89, 20.82, 20.80,
14.39. IR (KBr): 3354, 2938, 1757, 1542, 1372, 1226, 1046, 940,
906, 754, 601
cm-¹. ESI-MS: m/z = 820.22 [M+ + 1].
Compound 2f: yield 24%; mp 92-94 ˚C; [α]D
²0 +14.1
(c 1.0, CH2Cl2). ¹H
NMR (500 MHz, CDCl3): δ = 0.97-1.28
(m,
5 H, cyclohexane-H), 1.54-1.87 (m, 3 H, cyclohexane-H), 1.88-2.25
(m, 27 H, 7 CH3, 2 NCH3), 2.34-2.51
(m, 1 H, NCH), 3.64-3.71 (m, 1 H, pyranose-H), 3.72-3.89
(m, 2 H, pyranose-H), 4.00-4.17 (m, 4 H, OCH2),
4.27-4.48 (m, 2 H, pyranose-H), 4.72-4.87 (m,
1 H, pyranose-H), 4.87-4.93 (m, 1 H, pyranose-H), 5.02-5.09
(m, 1 H, pyranose-H), 5.12-5.27 (m, 1 H, pyranose-H), 5.27-5.31
(m, 1 H, pyranose-H), 5.42-5.65 (br, 1 H, NH). ¹³C
NMR (125 MHz, DMSO): δ = 170.97, 170.65, 170.54,
170.34, 170.26, 169.29, 169.11, 100.99, 90.16, 74.00, 73.10, 72.34,
71.19, 70.81, 70.77, 69.29, 69.16, 66.89, 66.83, 61.01, 52.66, 40.15,
34.08, 25.44, 24.80, 24.55., 21.04, 21.02, 20.86, 20.83, 20.81,
20.70, 14.38; IR (KBr): 3357, 2938, 1757, 1542, 1372, 1225, 1046,
940, 906, 754, 602 cm-¹. ESI-MS: m/z = 820.19 [M+ + 1].
Compound 2g: yield 38%; mp 158-160 ˚C; [α]D
²0 +57.9
(c 1.0, CH2Cl2). ¹H
NMR (500 MHz, CDCl3): δ = 0.75-0.88
(t, 12 H, CH3), 0.89-1.72 (m, 8 H, cyclohexane-H),
1.72-2.38 (m, 20 H), 3.78-3.88 (m, 1 H, pyranose-H),
3.97-4.11 (m,
1 H, pyranose-H), 4.31-4.44
(m, 1 H, pyranose-H), 4.89-5.12 (m, 2 H, CH2),
5.25-5.37 (m, 1 H, pyranose-H), 5.66-5.83 (m,
1 H, NH), 6.08-6.23 (m, 1 H, pyranose-H), 6.33-6.61
(m, 1 H, NH). ¹³C NMR (125 MHz, CDCl3): δ = 183.17, 171.38,
170.92, 170.04, 169.89, 82.83, 73.37, 73.14, 70.72, 68.63, 63.84,
61.84, 58.91, 55.05, 32.48, 26.80, 25.85, 24.65, 23.09, 21.36, 20.99,
20.95, 20.83, 20.79. IR (KBr): 3371, 2951, 1751, 1511, 1369, 1232,
1038, 909, 759, 594 cm-¹. ESI-MS: m/z = 616.4 [M+ + 1].
Compound 2h: yield 35%; [α]D
²0 +23.3
(c 1.0, CH2Cl2).
¹H
NMR (500 MHz, CDCl3): δ = 0.79-0.87
(t, 6 H, CH3), 0.87-1.20 (m, 8 H, CH2),
1.20-1.35 (7 H, cyclohexane-H), 1.63-1.84 (m,
3 H, cyclohexane-H), 1.94-2.08 (q, 12 H, COCH3),
2.15-2.45 (m, 4 H, NCH2), 3.30-3.65
(m, 1 H, NH), 3.72-4.34 (m, 3 H, pyranose-H), 4.90-5.71
(m, 4 H, pyranose-H), 6.35-6.60 (m, 1 H, NH). ¹³C
NMR (125 MHz, CDCl3): δ = 183.16, 171.59,
170.83, 170.0, 169.81, 90.11, 82.81, 73.35, 73.04, 71.08, 68.61,
63.63, 62.09, 55.53, 49.55, 32.79, 31.41, 25.75, 24.68, 23.64, 20.91,
20.90, 20.83, 20.78, 14.28. IR (KBr): 3362, 2933, 1758, 1543, 1377,
1232, 1039, 912, 751, 610 cm-¹. ESI-MS: m/z = 616.5 [M+ + 1].