RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087371
Efficient Synthesis of Optically Active Gallocatechin-3-gallate Derivatives via 6-endo-Cyclization
Publikationsverlauf
Publikationsdatum:
26. November 2008 (online)
Abstract
Optically active dihydrobenzopyran derivatives are synthesized by 6-endo cyclization of corresponding epoxy-phenol, which is readily derived from the enantioselective epoxidation of 1,3-diarylpropene. Synthetic dihydrobenzopyrans are converted into (-)-5,7-dideoxy-gallocatechin gallate as well as (-)-5,7-dideoxy-epigallocatechin derivative.
Key words
dihydrobenzopyran - 6-endo cyclization - enantioselective epoxidation - (-)-5,7-dideoxy-gallocatechin gallate
- For recent review on catechin, see:
-
2a
Nagle DG.Ferreira D.Zhou Y.-D. Phytochemistry 2006, 67: 1849 -
2b
Friedman M. Mol. Nutr. Food Res. 2007, 51: 116 -
2c
Wheeler DS.Wheeler WJ. Drug Dev. Res. 2004, 61: 45 - For a recent SAR study of catechin, see:
-
3a
Wan SB.Landis-Piwowar KR.Kuhn DJ.Chen D.Dou QP.Chan TH. Bioorg. Med. Chem. 2005, 13: 2177 -
3b
Moon Y.-H.Lee J.-H.Ahn J.-S.Nam S.-H.Oh D.-K.Park D.-H.Chung H.-J.Kang S.Day DF.Kim D. J. Argric. Food Chem. 2006, 54: 1230 -
3c
Dell’Agli M.Bellosta S.Rizzi L.Galli GV.Canavesi M.Rota F.Parente R.Bosisio E.Romeo S. Cell. Mol. Life Sci. 2005, 62: 2896 -
4a
Zaveri NT. Org. Lett. 2001, 3: 843 -
4b
Li L.Chan TH. Org. Lett. 2001, 3: 739 -
4c
Higuchi T.Ohmori K.Suzuki K. Chem. Lett. 2006, 35: 1006 -
4d
Kitade M.Ohno Y.Tanaka H.Takahashi T. Synlett 2006, 2827 -
4e
Ding T.-J.Wang X.-L.Cao X.-P. Chin. J. Chem. 2006, 24: 1618 - 5
Furuta T.Hirooka Y.Abe A.Sugata Y.Ueda M.Murakami K.Suzuki T.Tanaka K.Kan T. Bioorg. Med. Chem. Lett. 2007, 17: 3095 - 6
Wu X.-Y.She X.Shi Y. J. Am. Chem. Soc. 2002, 124: 8792 -
7a
Nicolau KC.Prasad CVC.Somers PK.Hwang C.-K. J. Am. Chem. Soc. 1989, 111: 5330 -
7b
Jain AC.Arya P.Nayyar NK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1983, 22: 1116 -
7c For a recent report, see:
Matsuo G.Kawamura K.Hori N.Matsukura H.Nakata T. J. Am. Chem. Soc. 2004, 126: 14374 -
7d For the disubstituted
epoxide, see:
Oka T.Fujiwara K.Murai A. Tetrahedron 1996, 52: 12091 -
8a
Blakemore PR.Cole WJ.Kocieński PJ.Morley A. Synlett 1998, 26 -
8b Review of modified Julia
reaction, see:
Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002, 2563 -
8c
Z-selective
Julia olefination, see:
Lebrun M.-E.Marquand PL.Berthelette C. J. Org. Chem. 2006, 71: 2009 - 14
Van Dyk MS.Steynberg JP.Steynberg PJ.Ferreira D. Tetrahedron Lett. 1990, 31: 2643 - 15
Mori A.Mizusaki T.Ikawa T.Maegawa T.Monguchi Y.Sajiki H. Tetrahedron 2007, 63: 1270 - 17 A similar pyran ring construction
through the quinone methide intermediate has been reported, see:
Noda I.Horita K.Oikawa Y.Yonemitsu O. Tetrahedron Lett. 1986, 27: 1917 ; although many 6-endo cyclizations of epoxyalchol have been reported, cis-disubstituted epoxide has yet to be reported
References and Notes
Present Address: Fine Organic Synthesis, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
9Although HWE reaction of 10 and phosphonate 24 provided 8a in good stereoselectivity, it resulted in a low yield (Scheme [7] ).
10In acidic conditions, epoxide 16 was readily converted into quinone methide intermediate 25, and sequential attack by MCBA to benzyl position of 25 afforded 26 (Scheme [8] ).
11
Experimental Procedure
for Shi Epoxidation
To a solution of 15 (77.0
mg, 0.255 mmol) in MeCN-DMM (dimethyl methylether) (1:2,
2.7 mL) were successively added 8a (100
mg, 0.156 mmol), Bu4N+HSO4
- (2.4
mg, 7.0 µmol), phosphorus buffer (pH 9.18, 4 mL), Oxone
(376 mg, 0.611 mmol), and K2CO3 (125 mg, 0.90
mmol) at 0 ˚C. After being stirred for 25 min at 0 ˚C,
H2O was added to the reaction mixture, extracted with
EtOAc, dried over anhyd MgSO4, and evaporated. The residue
was purified by chromatography on silica gel column (n-hexane-EtOAc, 10:1) to afford 16 (71.5 mg, 70%) as a yellow
oil. The ee of 16 was determined by HPLC
analysis on a chiral stationary phase under the conditions described
below.
Spectral Data for 16
[α]D
²0 +14.1
(c 1.0, CHCl3). IR (neat):
1116, 1253, 1591, 2927, 3030 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 0.24 (s, 6
H), 1.01 (s, 9 H), 2.93 (dd, J = 14.3,
5.2 Hz, 1 H), 3.04 (dd, J = 14.3,
5.2 Hz, 1 H), 3.15 (td, J = 5.2,
2.0 Hz, 1 H), 3.58 (d, J = 2.0
Hz, 1 H), 5.02 (s, 2 H), 5.07 (s, 4 H), 6.57 (s, 2 H), 6.82 (dd, J = 7.9, 1.2
Hz, 1 H), 6.92 (td, J = 7.9,
1.2 Hz, 1 H), 7.13 (td, J = 7.9,
1.2 Hz, 1 H), 7.31-7.42 (m, 15 H). ¹³C NMR
(68 MHz, CDCl3): δ = -4.0,
18.3, 25.8, 33.0, 58.6, 62.2, 71.2, 75.2, 105.0, 118.4, 121.2, 127.4,
127.7, 127.8, 128.1, 128.5, 128.6, 130.7, 133.3, 137.0, 137.8, 153.0, 153.7.
MS-FAB: m/z = 659 [M + H]+.
HRMS: m/z calcd for C42H47O5Si [M + H]+:
659.3193; found: 659.3167. HPLC analysis: Daicel Chiralpak AD-H
0.46 cm ø x 25 cm, eluent: 7% IPA-hexane,
flow rate: 0.5 mL/min, t
R = 98.7
min (96.2%), 109.7 min (3.7%).
Experimental Procedure
for 6-
endo
Cyclization
To
a solution of 16 (127 mg, 0.193 mmol) in
THF (4.5 mL) were successively added AcOH (33 µL, 0.578
mmol) and TBAF (1 M in THF, 231 µL, 0.231 mmol) at 0 ˚C
under an Ar atmosphere. After being stirred for 10 min at 0 ˚C,
H2O was added to the mixture and extracted with EtOAc,
dried over anhyd MgSO4, and evaporated to the crude product (major
constituent: 7; 185 mg) as a yellow oil.
The crude 7 (185 mg) and CSA (45.4 mg,
0.193 mmol) were dissolved in CH2Cl2 (4.5
mL) under an Ar atmosphere. After being stirred for 30 min at 0 ˚C,
H2O was added to the mixture and extracted with CH2Cl2,
dried over anhyd MgSO4, and evaporated. The residue was
purified by chromatography on silica gel column (n-hexane-EtOAc,
3:1) to afford 6 (63.7 mg, 61%,
2 steps), containing a small amount of the corresponding cis-isomer, as a yellow oil. The product
(20.3 mg) was recrystallized from EtOAc-hexane to afford optically
pure trans-isomer 6 (13.7
mg, 67%). The ee of 6 was determined
by HPLC analysis on a chiral stationary phase under the conditions
described below. Spectral date for 6: [α]D +1.7
(c 0.84, CHCl3). IR (neat):
1132, 1246, 1597, 3032 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.63 (d, J = 3.8 Hz,
1 H), 2.89 (dd, J = 15.8,
9.1 Hz, 1 H), 3.07 (dd, J = 15.8, 5.5
Hz, 1 H), 3.99 (dq, J = 15.8,
3.8 Hz, 1 H), 4.65 (d, J = 7.9 Hz,
1 H), 5.11-5.16 (m, 6 H), 6.73 (s, 2 H), 6.91-6.95
(m, 1 H), 7.11 (d, J = 7.3
Hz, 1 H), 7.16 (t, J = 7.3
Hz, 1 H), 7.25-7.44 (m, 16 H). ¹³C
NMR (68 MHz, CDCl3): δ = 32.9, 68.1,
71.2, 75.2, 81.9, 106.7, 116.4, 120.2, 121.1, 127.5, 127.7, 127.8,
127.9, 128.2, 128.47, 128.53, 130.0, 133.3, 136.8, 137.7, 138.7,
153.0, 153.9. MS.FAB: m/z = 544 [M]+. HRMS: m/z calcd for C36H32O5 [M]+:
544.2250; found: 544.2264. HPLC analysis: Daicel Chiralcel OD 0.46
cm ø x 25 cm, eluent: 10% IPA-hexane,
flow rate: 0.5 mL/min, t
R:
77.8 min (>99%).
Spectral Data
for 4
[α]D
²0 -73.5
(c 1.1, 50% acetone-H2O).
IR (neat): 1230, 1336, 1693, 3287 cm-¹. ¹H
NMR (270 MHz, acetone-d
6):
δ = 2.79
(dd, J = 16.2,
5.6 Hz, 1 H), 2.93 (dd, J = 16.2,
4.6 Hz, 1 H), 5.11 (d, J = 5.3
Hz, 1 H), 5.30 (q, J = 5.3
Hz, 1 H), 6.34 (s, 2 H), 6.76 (t, J = 7.9
Hz, 2 H), 6.97 (d, J = 6.6
Hz, 1 H), 6.98 (s, 2 H), 7.05 (t, J = 7.6
Hz, 1 H), 7.93 (br s, 6 H). ¹³C NMR
(68 MHz, acetone-d
6): δ = 52,1,
70.5, 79.0, 106.3, 110.1, 110.2, 117.1, 120.4, 121.7, 121.8, 128.8,
131.0, 131.1, 133.6, 139.2, 146.2, 146.9, 155.0, 166.3. MS-FAB: m/z = 427 [M + H]+.
HRMS: m/z calcd for C22H19O9 [M + H]+:
427.1029; found: 427.1049.
Spectral Data
for 21
[α]D
²0 -16.7
(c 0.075, CHCl3). IR (neat):
837, 1255, 1608, 3543 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = -0.30
(s, 3 H), -0.08 (s, 3 H), 0.17 (m, 9 H), 0,78-0.98
(m, 30 H), 2.90 (dd, J = 15.8,
5.5 Hz, 1 H), 3.08 (dd, J = 15.8,
5.5 Hz, 1 H), 3.93 (tt, J = 10.7,
3.1 Hz, 1 H), 4.57 (t, J = 8.5
Hz, 1 H), 5.23 (s, 1 H), 6.55 (s, 2 H), 6.87-6.90 (m, 2
H), 7.07 (d, J = 2.0
Hz, 1 H), 7.12 (t, J = 7.2
Hz). ¹³C NMR (68 MHz, CDCl3):
δ = -5.2, -4.8, -4.5, -4.3, -0.01,
1.0, 17.9, 18.3, 25.7, 25.9, 26.2, 35.4, 69.2, 82.0, 107.5, 112.0,
112.3, 116.4, 120.6, 120.7, 127.5, 129.6, 129.8, 138.6, 142.9, 154.3.
MS-FAB: m/z = 617 [M + H]+.
HRMS: m/z calcd for C33H57O5Si3 [M + H]+:
617.3514; found: 617.3516. HPLC analysis: Daicel Chiralpak AD-H
0.46 cm ø x 25 cm, eluent: hexane, flow rate: 0.7 mL/min, t
R: 30.5 min.
Experimental Procedure
and Separation of Diasteromers
Compounds 22 and 6 (33.5
mg, 61.5 mmol), 18 (81.3 mg, 184 mmol),
WSC (29 mg, 154 mmol), and DMAP (0.8 mg, 6.2 mmol) were dissolved
in CH2Cl2 (3 mL) under an Ar atmosphere. After
being stirred for 3 h at r.t., sat. NH4Cl aq was added
to the reaction mixture, extracted with CH2Cl2, dried
over anhyd MgSO4, and evaporated. The residue was purified
by chromatography on silica gel column (n-hexane-EtOAc,
6:1) to afford 23 (33.3 mg, 56%, R
f
= 0.42,
n-hexane-EtOAc, 3:1) and 5 (26.2 mg, 44%, R
f
= 0.49,
n-hexane-EtOAc, 3:1).