Subscribe to RSS
DOI: 10.1055/s-0028-1087412
Catalytic Asymmetric Allylation of Aliphatic Aldehydes by Chiral Bipyridine N,N′-Dioxides
Publication History
Publication Date:
26 November 2008 (online)
Abstract
A new class of axially chiral bipyridine N,N′-oxides with bis(tetrahydroisoquinoline) framework were tested as catalysts in the reaction of aliphatic aldehydes with allyl(trichloro)silane to afford homoallylic alcohols. The course of the reaction, that is, the catalytic activity as well as enantioselectivity, is strongly dependent on the solvent used. The products were obtained in good yields and up to 68% ee in chloroform.
Key Words
allylations - aldehydes - Lewis base - asymmetric catalysis - solvent effect
-
2a
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
2b
Marshall JA. Chem. Rev. 1996, 96: 31 -
2c
Denmark SE.Fu J. Chem. Rev. 2003, 103: 2763 - For reviews, see:
-
3a
Chelucci G.Thummel RP. Chem. Rev. 2002, 102: 3129 -
3b
Chelucci G.Murineddu G.Pinna GA. Tetrahedron: Asymmetry 2004, 15: 1373 -
3c
Malkov AV.Kočovský P. Curr. Org. Chem. 2003, 7: 1737 -
3d
Kočovský P.Malkov AV. Russ. Chem. Bull. 2004, 53: 1806 -
3e
Rendler S.Oestreich M. Synthesis 2005, 1727 -
3f
Orito Y.Nakajima M. Synthesis 2006, 1391 -
3g
Kočovský P.Malkov AV. Eur. J. Org. Chem. 2007, 29 - 4 For a review, see:
Denmark SE.Buetner GL. Angew. Chem. Int. Ed. 2008, 47: 1560 - 5
Nakajima M.Saito M.Shiro M.Hashimoto S. J. Am. Chem. Soc. 1998, 120: 6419 - 6
Wong W.-L.Lee C.-S.Leung H.-K.Kwong H.-L. Org. Biomol. Chem. 2004, 2: 1967 - 7
Chelucci G.Baldino S.Pinna GA.Benaglia M.Buffa L.Guizzetti S. Tetrahedron 2008, 64: 7574 - 8
Malkov AV.Orsini M.Pernazza D.Muir KW.Langer V.Meghani P.Kočovský P. Org. Lett. 2002, 4: 1047 - 9
Chai Q.Sung C.Sun Z.Ma Y.Ma C.Dai Y.Andrus MB. Tetrahedron Lett. 2006, 47: 8611 - 10
Simonini V.Benaglia M.Pignataro L.Guizzetti S.Celentano G. Synlett 2008, 1061 -
11a
Hrdina R.Stará IG.Dufková L.Mitchel S.Císařová I.Kotora M. Tetrahedron 2006, 62: 968 -
11b
Hrdina R.Kadlčíková A.Valterová I.Hodačová J.Kotora M. Tetrahedron: Asymmetry 2006, 17: 3185 -
11c
Hrdina R.Valterová I.Hodačová J.Kotora M. Adv. Synth. Catal. 2007, 349: 822 -
11d
Hrdina R.Dračínský M.Valterová I.Hodačová J.Císařová I.Kotora M. Adv. Synth. Catal. 2008, 350: 1449 - 13
Iseki K.Mizuno S.Kuroki Y.Kobayashi Y. Tetrahedron 1999, 55: 977 - 14
Yu L.Chen D.Li J.Wang PG. J. Org. Chem. 1997, 62: 3575 - 15
Hosomi A.Kohra S.Ogata K.Yanagi T.Tominaga Y. J. Org. Chem. 1990, 55: 2415 - 16
Bonini BF.Comes-Franchini M.Fochi M.Mazzanti G.Nanni C.Ricci A. Tetrahedron Lett. 1998, 39: 6737 - 17
Teo YC.Tan KT.Loh TP. Chem. Commun. 2005, 1318 - 18
Costa AL.Piazza MG.Tagliavini E.Trombini C.Umani-Ronchi A. J. Am. Chem. Soc. 1993, 115: 7001 - 19
Jadhav PK.Bhat KS.Perumal PT.Brown HC. J. Org. Chem. 1986, 51: 432
References and Notes
Erasmus-Socrates exchange student from Glasgow University, Glasgow, Scotland.
12
General Procedure
for Catalytic Allylation of Aliphatic Aldehydes with Allyl(trichloro)silane
To
a solution of 1 (0.01 mmol) in a solvent
(2 mL) were added aldehyde (1 mmol) and di(isopropyl)ethylamine
(155 mg, 208 µL, 1.2 mmol). The temperature was adjusted
to either -40 ˚C, -50 ˚C, -55 ˚C,
or -78 ˚C before addition of allyl(trichloro)silane
(210 mg, 170 µL, 1.2 mmol) and the reaction mixture was
stirred for 1-24 h. Then it was quenched with sat. aq NaHCO3 (2
mL), the organic layer separated and dried over MgSO4.
Yields and ee of homoallylalcohols 3a-c were determined by GC (HP-Chiral β,
30 m × 0.25 mm, oven: 70 ˚C,
then 0.5 ˚C/min to 170 ˚C, flow:
1.5 mL/min), ees of 3d-f were determined by ¹9F
NMR of the corresponding esters derived from (S)-Mosher
acid chloride. All homoallylalcohols are known compounds and the
spectral properties of 3a,¹³ 3b,¹4 3c,¹5 3d,¹6 3e,¹6 and 3f
¹³ were
in accordance with the previously reported values. The configuration
of the major enantiomer for 3a,¹³,¹7 3b,¹8 3c,¹8 and 3f
¹9 was based on comparison
with known optical properties.
Catalysis by (
R
,
S
,
R
)-1c
Aldehyde 2a in CHCl3 at -40 ˚C:
(R)-(+)-3a, [α]D +5.71
(c 0.005, CH2Cl2), [t
R (S) = 68.10
min, t
R
(R) = 68.69 min), 68% ee
(77% yield).
Aldehyde 2b in
CHCl3 at -40 ˚C: (S)-(-)-3b, [α]D -3.00
(c 0.005, CHCl3), (t
R
(R) = 32.62 min, t
R
(S) = 33.22 min), 56% ee
(84% yield).
Aldehyde 2c in
CHCl3 at -40 ˚C: (S)-(-)-3c, [α]D -2.50
(c 0.005, CH2Cl2),
(t
R
(S) = 65.92 min, t
R
(R) = 67.30 min), 64% ee
(79% yield).
Aldehyde 2d in
CHCl3 at -40 ˚C: (R)-(-)-1-cyclopentyl-but-3-en-1-ol
(3d), [α]D -3.33
(c 0.005, CH2Cl2),
68% ee (91%, yield; absolute configuration was
estimated by comparison of properties with analogical compounds).
Aldehyde 2e in CHCl3 at -40 ˚C:
(R)-(-)-1-cyclopropyl-but-3-en-1-ol
(3e), [α]D -2.50˚ (c 0.005, CH2Cl2),
42% ee (90% yield; absolute configuration was
estimated by comparison of properties with analogical compounds).
Aldehyde 2f in CHCl3 at -40 ˚C:
(S)-(-)-1-tert-butyl-but-3-en-1-ol
(3f), [α]D -3.33
(c 0.005, C6H6),
22% ee (10% yield).